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Abstract

Designing low-latency, high-accuracy and energy-efficient vision systems requires an approach characterised by
consistency between the algorithmic solution and the target platform on which it will run. The main challenge is
to implement highly memory and computationally complex neural networks in small low-power devices, such as
SoCs (System on Chips), FPGAs (Field-Programmable Gate Arrays) or ultimately ASICs (Application-Specific
Integrated Circuits). A number of methods are therefore being used to reduce this complexity, either by reducing the
size of the model or by simplifying the computations, particularly multiply and accumulate operations: one of these
is the integer quantisation of network parameters. Linear 8-bit quantisation has become a certain standard, while it
is other special schemes that will allow to develop advanced systems with much higher performance. This research
proposes methods for training and efficient hardware implementation of neural networks quantised to weights of
powers of two, allowing the development of 4-bit models with efficiency comparable to full-precision networks
and, at the same time, allowing a significant reduction in computational complexity by changing the multiplication
to a bit-shift operation. Furthermore, the possibility of using different quantisation schemes (linear, logarithmic,
binary and mixed) for neural networks used in advanced vision systems was also analysed, proposing models
dedicated to low-power devices, for classification, tracking and object detection tasks. As a result of appropriate
algorithm design and implementation in embedded platforms (so-called hardware aware algorithm co-design), it
is shown that proper model quantisation methods enable the implementation of complex vision systems with high

accuracy, low latency and low power consumption.






Streszczenie

Projektowanie energooszczednych systeméw wizyjnych o malej latencji i wysokiej skutecznosci dzialania wy-
maga podejScia charakteryzujacego si¢ spéjnoscia miedzy rozwiazaniem algorytmicznym i docelowa plat-
forma, na ktérej zostanie ono uruchomione. Gtéwnym wyzwaniem jest implementacja ztozonych pamigciowo-
obliczeniowo sieci neuronowych w niewielkich urzadzeniach matej mocy, jak SoC (System on Chip), FPGA
(Field-Programmable Gate Array) czy docelowo ASIC (Application-Specific Integrated Circuit). Stosuje si¢ zatem
szereg metod pozwalajacych na redukcjg tej ztozono$ci, poprzez zmniejszenie rozmiaréw modelu lub uproszczenie
obliczen, w szczegdlnosci operacji mnozaco-akumulujacych: jedng z nich jest kwantyzacja parametrow sieci do
liczb catkowitych. Pewnym standardem stata si¢ kwantyzacja liniowa 8-bitowa, natomiast to inne, specjalne sche-
maty pozwola na realizacj¢ zaawansowanych systeméw o znacznie wyzszej wydajnosci. W ramach przeprowadzo-
nych badan zaproponowano metody uczenia i wydajnej implementacji sprzetowej sieci kwantyzowanych do wag o
warto$ciach poteg dwdjki, pozwalajac na realizacje modeli 4-bitowych o skutecznosci poréwnywalnej do sieci pet-
nej precyzji i jednoczes$nie umozliwiajac znaczna redukcje ztozonosci obliczeniowej poprzez zmiang mnozenia na
operacje¢ przesunigcia bitowego. Ponadto przeanalizowano tez mozliwosci uzycia r6znych schematéw kwantyzacji
(liniowej, logarytmicznej, binarnej i mieszanej) dla sieci neuronowych uzywanych w zaawansowanych systemach
wizyjnych, proponujac modele dedykowane urzadzeniom niewielkiej mocy, dla zadan klasyfikacji, Sledzenia oraz
detekcji obiektéw. W wyniku odpowiedniego projektowania algorytméw i ich implementacji w platformach wbu-
dowanych pokazano, ze odpowiednie metody kwantyzacji modeli umozliwiaja realizacj¢ systeméw o wysokiej

skuteczno$ci dziatania, matej latencji i niskim poborze energii.
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Acronyms and Abbreviations

ADAS Advanced Driver Assistance Systems
Al Artificial Intelligence
APoT Additive Powers-of-Two

ASIC Application-Specific Integrated Circuit
BAC Bitshift and Accumulate

CPU Central Processing Unit

DVS Dynamic Vision Sensor

eGPU Embedded Graphics Processing Unit

FPGA Field-Programmable Gate Array

FPS Frames Per Second

GAN Generative Adversarial Network
GFLOPS Giga Floating Point Operations per Second

GPU Graphics Processing Unit
ILSVRC ImageNet Large Scale Visual Recognition Challenge

LiDAR Light Detection and Ranging

LLM Large Language Model

MAC Multiply and Accumulate

ML Machine Learning

POC Proof of Concept

PoT Powers-of-Two

QAT Quantization-Aware Training



RCNN Region-based Convolutional Neural Network
RL Reinforcement Learning

ROI Region of Interest

SoC System on Chip
SOTA State-of-the-Art

STE Straight Through Estimator

TinyML Tiny Machine Learning

YOLO You Only Look Once
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1. Introduction

The recent years of advances in the development of applications using so-called Artificial Intelligence (Al)
place humanity at the verge of a technological revolution, although it is actually not yet entirely clear of what kind.
Leaving beyond discussion the voices of the overly optimistic enthusiasts and the fatalists on the other extreme, it is
very likely that in the not too distant future we shall have the opportunity to establish a kind of symbiosis between
natural (exhibited by the human species) and artificial intelligence. The current revolution in many ways resembles
the advent of the Internet, and many of the voices accompanying that groundbreaking invention seem strangely
relevant today, in the context of the Al and, especially, the huge (!) amount of data we must deal with. Noted in
1997 [Reirer, 1997]], “The good news is that everything is widely available. The bad news is that everything is
widely available, (...) if you search for an item even with a very good search engine, most of the results you get
will be irrelevant”, originally referring to the Internet, can be easily used to comment on so popular nowadays
applications based on generative models like ChatGPT or DALL-E. At the same time it is evident, drawing from
more than 25 years of experience, that although indeed Internet search engines generate a lot of information that is
useless from the user’s point of view, the technology today is much more mature, and our knowledge (and perhaps
already intuition, resulting from exposure to technology from an early age — especially for generations who do not
remember the days without the Internet) allows us to use these tools efficiently. The same is likely to happen to the
aforementioned Al based applications, or rather their next generations. Yet another challenge is the question of the
credibility of the data — a second quote from the 1997 source can be used here: ”You used to spend hours getting
the information you needed. Now you spend hours verifying the information you have gotten.” Does this not sound
like something so up-to-date that it could have been posted just yesterday on some social network in the context
of, say, another DeepFake (albeit the infamous video staging the surrender of the Ukrainian President circulating
on the Internet in 2022)? It is up to the user of the language model to verify the obtained information, as it may be
a hallucination, or refer to non-existent sources, or simply be wrong (if only because of an inaccurately formulated
question).

Just as in the past it was difficult to predict how the world would change due to widespread Internet access, it is
now impossible to determine exactly what transformation the ongoing Al revolution will bring. It is known, how-
ever, that in addition to the above-mentioned challenges, mankind has to face others — in particular when applying
Al to autonomous systems, which now hold more responsibility than ever before. Autonomous vehicles (military
drones or cars) are an obvious example of such, and so are Advanced Driver Assistance Systems (ADAS). The
machines are (or will be) often equipped with cameras and other sensors — various types of radars, thermal imag-
ing or ultrasonic devices. They form the vehicle’s perception system, providing necessary information about the
environment. Data collected from some non-camera sensors can also be analysed using digital image processing
(or similar) algorithms: in particular, from Light Detection and Ranging (LiDAR) sensors generating a 3D point
cloud, or event cameras — Dynamic Vision Sensor (DVS) — recording an event cloud. Proper analysis of the col-
lected data enables making appropriate decisions for controlling the vehicle. In particular, for such analysis, one
should consider using neural networks (mainly convolutional, but also graph or so-called transformers), specialised

for finding and reproducing patterns in detection, tracking or segmentation tasks. The control system itself can be



designed in a standard way, i.e., algorithm is trained offline on huge amounts of data representing real-world sce-
narios. The other option uses Reinforcement Learning (RL), where an agent (autonomous vehicle) explores the

environment in some pseudo-random way, and learns which actions are profitable with the help of a reward signal.

At the same time, in the considered applications it is necessary to operate with low latency, i.e. the response
of the system must be received with minimal delay: data must be processed at a speed that guarantees timely
delivery of the necessary information relevant to the control, supervision or monitoring of the external process.
Such systems are referred to as real time vision systems [Gorgon, 2013|]. Finally, the whole system should operate
on devices with limited energy budget, often battery-powered. Simultaneous fulfilment of real-time and high-
accuracy conditions requires using proper devices, with adequate computing performance — in particular, with
multi-threading, e.g., multiple Central Processing Units (CPUs) or Graphics Processing Units (GPUs). However,
adding a third requirement — energy efficiency — will define a problem that forces a shift in approach of algorithm
development from a paradigm of gigabyte-sized solutions (the large neural networks that form the basis of the most
exciting applications, treated as the starting point of this introduction) to compact algorithms running in low-power

embedded devices.

Low-power embedded devices include microcontrollers (and microprocessors), System on Chips (SoCs) and
Field-Programmable Gate Array (FPGA) platforms, dedicated Application-Specific Integrated Circuit (ASIC)
chips, but also Embedded Graphics Processing Units (eGPUs) or neuromorphic platforms. The characteristics
of these devices are different: microcontrollers and eGPUs are general-purpose processors, i.e. execution of the
set of instructions (an algorithm) is bounded to the underlying electronic circuit architecture. This implies that the
possibilities for optimising the computations are limited, but due to the versatility of such platforms (and relative
ease of programming), and access to libraries that can optimise the software for a particular hardware architecture,
such choice is often justified and sufficient — particularly when using appropriate methods to optimise the neural
network model itself. Obviously, eGPUs are also characterised by the possibility of significant parallelisation of
computations. The FPGA platforms (including SoCs) and dedicated ASICs allow the hardware architecture to be
adapted to the designed solution. Once the ASIC has been fabricated, the further possibilities of configuring the
device architecture are limited, while the architecture of FPGAs and SoCs can be configured (reconfigured) after
the electronic system is built, and even during the execution of computing tasks. The ASIC chip, which architecture
is best suited to the computational task and optimisation, will therefore have an even lower power consumption
than the FPGA. Whereas the ASIC is the so-called end product, in the early stages it is the FPGA chip that is often
initially used as the Proof of Concept (POC) for a given architecture. FPGA is also preferential if the algorithm
architecture may change during product life-cycle. In both of these cases, one is dealing with a completely different
approach to programming — one does not define the input processing instructions, but the entire electronic circuit
architecture, ultimately a dataflow-based architecture. This opens up new possibilities in the efficient implemen-
tation of neural networks. The last group of mentioned devices are neuromorphic platforms, which, due to their
specificity, are difficult to categorise into any of the distinguished groups. Firstly, these devices are not currently
commercially available, but rather are the subject of research at several universities and corporations. While they
are not reconfigurable in the same way as FPGAs, their architecture is closely related to the only type of model
they support — spiking neural networks. Processing data event-driven (coherently with the 3rd generation spiking

neuron model), it is expected to guarantee very low power consumption and fast data processing.

Regardless of the choice of computational platform (summarised in Table [I.T), there are number of methods
for reducing the memory-computational complexity of neural networks that can be used independently, such as
quantisation, pruning and other simplifications of operations. Furthermore, it is increasingly common for the stan-
dard Al/Machine Learning (ML) tools (e.g. PyTorch) to have extensions that allow appropriate compression and
fast inference of neural networks on general-purpose processors, while optimising how the computations are per-

formed for the appropriate hardware (i.e. drawing on the already established architecture in an efficient manner).
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Table 1.1: The differences between hardware platforms used for deep neural networks inference: multithreading
(ability to parallelise computations in neural networks), reconfigurability (R — flexibility of defining connections
between electronic elements) and programmability (P — uploading virtually any program understood as a sequence

of instructions described using a standard programming language, e.g. C, Python, etc.).

Platform Power* [W]  Multithreading R P

CPU 65-150 Limited possibilities No Yes

GPU 250-400 Yes (massive) No Yes

eGPU 5-10 Yes (>60x lower than for GPU) No Yes
FPGA/SoC-FPGA <10 Yes, limited only by the number of ~ Yes Partial (for

electronic elements SoC-FPGA)

ASIC < FPGAf Yes, by design No No
Neuromorphic 1 Yes No Yes

* indicative values — may vary for specific platforms
T expected <1 [W]: in this context it’s best to compare ASICs to similar architectures designed in FPGAs

¥ according to Loihi2 documentation [Intel Labs, 2021]

However, the most can be achieved by combining these two areas — software (model-based) optimisations with
the way computations are performed. As a whole, the aforementioned methods are referred to as Tiny Machine
Learning (TinyML) methods.

It is worth at once to mention the reason for the necessity of model-based optimisations, and at the same time
to show how the development of hardware platforms (in this particular case, the GPUs) has influenced the devel-
opment of neural networks. While many breakthroughs have been made in the area of machine learning algorithms
over the years, perhaps the most relevant for the field of image processing are those related to the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [Russakovsky et al., 2015]]. Firstly, until the launch of the Ima-
geNet database, the efforts were oriented towards improving models and algorithms, without a proper emphasis
on the manifold of data nowadays known as training data. ImageNet was the first large-scale database and quickly
became a certain benchmark standard for digital image processing tasks, while also underpinning the now-classic
assumption that Al algorithms go hand in hand with big data. Secondly, in the 2012 edition of ILSVRC, a score be-
low an error of 25% was reached for the first time (with a difference to the next place of 9.8 percentage points). This
was achieved using the AlexNet model [Krizhevsky et al., 2012], a deep convolutional neural network, the architec-
ture that had hitherto been dismissed by many as impractical — deep learning (i.e., learning networks with multiple
layers) was not feasible with CPUs, and the high-end GPUs at the time had little memory (around 3GB). As net-
work depth was crucial for efficiency, AlexNet training was distributed across two GPUs, splitting the network in
half and ensuring adequate communication between nodes. This, and a number of other details in the architecture
(drawing on the first convolutional neural networks from the LeNet family [LeCun et al., 1989]]) demonstrated not
only the capabilities of deep models, but was a key to further incredible advances in the field of artificial intelli-
gence and its use in machine vision, along with the parallel development of now publicly available libraries for
the efficient implementation of these solutions in GPUs. Next generations of general-purpose GPUs with ever-
increasing computing power and internal memory resources were also not without influence. Thus, starting with
the classification task, deep convolutional neural networks began to dominate virtually all digital image processing
tasks: detection (You Only Look Once (YOLO) family of networks), tracking (Region-based Convolutional Neu-
ral Networks (RCNN5), Siamese networks), segmentation (YOLO networks, Siamese networks, endcoder-decoder

architectures), image generation (encoder-decoder architectures, Generative Adversarial Networks (GANs), dif-
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fusion models). Today, models using transformer architectures ([Kolesnikov et al., 2021]]), which use tokenisation

mechanisms, self-attention and classical fully connected feedforward neural networks, are gaining popularity.

Size and accuracy of NN-based computer vision models
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Figure 1.1: Relationship between the number of parameters and model accuracy: for the classification task
(AlexNet, VGG networks, ResNet, small MobileNet models, ViT transformers and Swin) for the ImageNet dataset;
for the detection task (YOLO networks, marked with grey background) mAP50-95 on the COCO dataset. The clas-

sification models highlighted in the diagram are often backbones to more advanced systems.

Figure [I.T] shows the number of parameters and accuracy of selected neural network models proposed from
2012 (AlexNet), up to 2021 (transformer-based architectures — ViT and Swin), or in the case of the highlighted
YOLO detectors, 2023. Architectures designed for the classification task are often the backbone for other models
used in more complex applications (in Siamese networks, encoders, decoders, etc.), so it is worth looking at the
practices for this simplest task. After the publication of the ground-breaking AlexNet architecture, much work
was devoted to designing even deeper (and therefore larger) architectures, such as the VGG family of networks.
Although increasing the depth of the network initially provided a stable accuracy raise, another obstacle was the
problem of vanishing gradients in the hidden layers (during back-propagation, the propagated gradients become
smaller and smaller, up to tiny values, causing no change to the weights of neural network), and the problem
of accuracy saturation-degradation when adding even more layers. In response, the ResNet family with residual
connections [He et al., 2016]] was developed. At the same time, more and more attention began to be focused on
network size, designing solutions with small architectures, such as MobileNet. Similarly, different backbone sizes
were used in the YOLO family, as well as a number of other procedures involving, among other things, the prepro-
cessing of training data, so that subsequent generations gained in accuracy. As a general rule of thumb, however,
a larger model is more likely to perform better in terms of accuracy - taking into account any architecture tricks
that improve the training process (such as residual connections). Although the size of the discussed models is defi-
nitely small compared to the Large Language Models (LLMs), in the context of embedded solutions representing a

significant part of vision system solutions, it is large enough to cause real problems in their implementation in real
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applications: autonomous vehicles, driver assistance systems, wearable tech and others. The number of parameters
translates into the number of performed operations, mainly of the Multiply and Accumulate (MAC) type, counted
in Giga Floating Point Operations per Second (GFLOPS). For example, ResNet18 performs 1.81 GFLOPS during
inference, while SwinB performs 15.43 GFLOPS. The implementation of neural networks in low-power devices is
therefore limited primarily by their size — methods must therefore be used that (1) reduce the number or size of pa-
rameters, so that the model occupies memory measured in kilobytes rather than megabytes or even gigabytes; and
(2) allow efficient implementation of these algorithms, using appropriate parallelisation of operations, simplifying
even the basic processing elements as much as possible.

One should also reflect on the more global issue of the environmental impact of Al solutions — according to a
report published by Stanford University in 2023 [Maslej et al., 2023|], 25 times more carbon dioxide was emitted
during the training of the BLOOM model (alternative to ChatGPT) than is attributed to a single passenger travelling
by air from New York to San Francisco. This is the influence of both the immensity of the training data (big data),
the complexity of the model and thus the performed computations, as well as the energy characteristics of GPU,
which is currently the most common platform of choice for accelerating these and similar models — and it is not an
isolated case.

Similar problems can be spotted with generative models inference — IEEE Spectrum [Wells, 2023 cites that
a single interaction with LLM can lead to power consumption comparable to lighting an LED bulb for an hour;
the [Samsi et al., 2023]] shows that in order to complete a meaningful interaction (as a sequence of consecutive
prompts) with the 65B LLaMA model, a minimum of 8 V100 GPUs, each with 32 GB RAM, or 4 A100 GPUs,
each with 80 GB RAM, is required (in the mentioned experiments, the maximum power consumption per GPU is
limited to 250W).

It is therefore also essential to examine what accompanies this ongoing revolution, and what will become
increasingly important even if one day the market and society saturates with yet more applications of Al in general,
or generative Al in particular, and which is already relevant, observing the constant attempts to automate virtually
every area of life, or the usual drive to improve its quality with small devices collecting and analysing vast amounts
of data. It is thus necessary to develop methods to use complex and accurate artificial intelligence models in
applications with a limited computational budget, resulting from the need to use low-power devices (in particular
battery-powered devices), or directly from the impossibility of using large GPU farms and a need to carry out
computations on personal computers (devices). Or the already mentioned ecological factors. The development of
such methods may not be sufficient on its own, and it is only when we move away from general-purpose platforms
to specialised hardware, and with hardware aware algorithm co-design, that we will finally be able to master

efficient implementation of highly memory-computational complex deep learning algorithms.

Research problems, contributions and scientific novelty

The goal of the conducted research was to analyse and develop methods enabling the implementation of func-
tional real-time vision systems using deep neural network algorithms in low-power devices. In particular, it in-
volved proposing methods of reducing the memory and computational complexity of algorithms, to a size suitable
for relatively small FPGA platforms (or ultimately dedicated circuits), while maintaining the accuracy of the core
solution, and using appropriate organisation of computations (performed in parallel) to meet the low latency re-
quirements. This dissertation takes the form of a series of publications that describe the results of the conducted
research in relation to the leading research hypothesis: appropriate methods for quantising the parameters of neu-
ral networks allow a significant reduction in the memory and computational complexity of the models, while
guaranteeing the preservation of a high accuracy and enabling implementation of real-time vision systems in

low latency and low power hardware platforms.
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The author’s main contribution to the discipline of automatics, electronic, electrical engineering and space

technology can be summarised in the following points:

1. The proposal of methods for training neural networks quantised to weights of powers-of-two values, the
design of a hardware architecture of special MAC operator (and the convolution layer), taking into account
the particular form of such a network, and a method of fusion of the convolution and batch normalisation

layers, taking into account the particular form of such a network.

2. A series of experiments and analysis of the impact of different quantisation schemes (linear, logarithmic),
with different target bit-widths, for neural networks used in advanced vision systems in embedded devices, to

assess the impact on the accuracy, memory-computational complexity and energy efficiency of such systems.

Chapter [2] presents a synthetic discussion of the dissertation with the main conclusions. The full publications

are included in Chapter [3] together with a table summarising the author’s contributions to each article.
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2. Synthetic overview of the dissertation

One method of reducing the memory-computational complexity of neural network models is to quantise the
parameters and/or activations to integers. An obvious consequence of such quantisation is a reduction in the size
of the model in terms of the number of bytes needed to store its parameters — the commonly used 8-bit quantisa-
tion allows a reduction in memory complexity with a factor of almost 4x (with respect to the 32-bit floating-point
models normally used in high-end GPUs). Furthermore, the use of integers also has the effect of reducing com-
putational complexity (simplifying the computational architecture), mainly for solutions on FPGAs or ASICs, but
also on CPUs (e.g. even 2-3 times more Frames Per Second (FPS) for ResNet-50 in 8-bit integer precision, with
relation to an optimised 32-bit floating point model, depending on the Intel Core 17 processor version, using the
OpenVINO tool [Intel, 2024]]) and GPUs (16x increase in computational throughput using quantisation to 8-bit
integers [Wu et al., 2020]). However, especially interesting in the context of low-power and low-latency solutions
are other special quantisation schemes, up to very low bit-widths, which allow the reduction of MAC operations
to much simpler equivalents: for logarithmic quantisation to powers of two to bit-shifting, for binary weights to
XNOR operations. Reducing the number of used electronic elements affects both the size of the system (in terms
of the number of necessary/used components) and ultimately the power consumption. At the same time, it is also
necessary to choose a solution that guarantees a satisfactory level of accuracy (particularly in safety-related ap-
plications), often measured against base models, i.e. the full precision, not subjected to quantisation. Linear 8-bit
quantisation often results in only a slight decrease in accuracy, while the use of lower bit-widths for this scheme
is generally associated with significant decreases. This may be different for logarithmic quantisation, which by
design is intended to model the distribution of quantisation levels in a way closer to the distribution of weights
in the convolution or fully connected layer. For this reason, it is often possible to maintain high accuracy even at
lower bit-widths. For the most radical form of quantisation, i.e. binary networks, high accuracy is achievable for
relatively simple problems such as well-defined classification, especially when using larger architectures (and thus

guaranteeing quite a bit of parameter redundancy).

Overview of the scope of the research with key results is presented below.

2.1. Powers-of-Two quantisation

This research proposes two methods for training the Powers-of-Two (PoT) neural networks (based on Straight
Through Estimator (STE) and by introducing Adaptive Learning Rate to compensate for unequal distances between
quantisation levels), with the best results achieved with the method drawing on the STE approach. First, the full
precision model is trained and then the Quantization-Aware Training (QAT) is performed in a standard loop,
running a forward pass with weights quantised according to the Equation (the weights w are scaled to the
interval [—1, 1], bitwidth is the target bit-width without the sign bit, F'SR is the Full Scale Range, specifying the

quantisation extremes). Backpropagation is then run on floating-point numbers and, after updating the weights, the
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Table 2.1: Training results for different ResNet models and ImageNet dataset, for different quantisation methods
(e.g. 4L/8U means quantising convolution layers logarithmically to 4-bitwidth and quantising fully connected lay-
ers using 8-bit linear quantisation), compared to other PoT-related SOTA methods. The difference in classification

performance relative to the floating-point model is given in brackets

Network L recision Proposed DeepShift APoT
W
(C/FC) [Przewlocka-Rus et al., 2022]]  [Elhoushi et al., 2021]]  [Li et al., 2020]
69.982% 70.7%
ResNet18 4L/32F )
(+0.224) (+0.5)
69.868%
ResNet18 4L/8U ) )
(+0.11)
69.526% 69.56%
ResNet18 4L/4L ]
(-0.232) (-0.198)
76.468% 76.33%
ResNet50 SL/5L
(+0.338) (+0.216)
76.404% 76.6%
ResNet50 4L/32F .
(+0.274) (+0.2)
76.384%
ResNet50 4L/8U ) )
(+0.254)
76.314%
ResNet50 4L/4L ) )
(+0.184)

model is re-quantised (and thus quantisation is performed between successive iterations).

o 0, ifw=0
LQ(w, bitwidth, FSR) = i
2% otherwise

w = clip(round(loga(|w|)), FSR — QbitWidth, FSR)

2.1
0, w < min
clip(w, min, max) = ¢ maz — 1, w > maz
w, otherwise

The method was tested for a number of architectures and compared with State-of-the-Art (SOTA) solu-
tions, showing that the proposed approach achieves results comparable (often better) to other methods using
the PoT weights [Elhoushi et al., 2021]] and variations of the PoT weights — Additive Powers-of-Two (APoT)
[Li et al., 2020]. The APoT method is similar to the PoT scheme except that the weights are quantised to the values
of the sums of powers of two, allowing a denser distribution of quantisation levels at the expense of increased com-
putational complexity. Representative results of mentioned experiments are shown in Table 2.1] a comprehensive
comparison for multiple architectures is available in article [Przewlocka-Rus et al., 2022].

In addition, a number of experiments were carried out comparing logarithmically and linearly quantised 4-
bit models, showing the advantage of PoT quantisation - a summary of the results is presented in Table -
and proving the potential for significant simplifications in terms of memory-computational complexity, also for

embedded devices. Firstly, it is shown that, for the classification task, the introduction of 4-bit PoT weights allows

D. Przewlocka-Rus Deep neural networks quantization and acceleration
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Table 2.2: Comparison of 4-bit models quantised logarithmically (to PoT values) and linearly

Network Baseline Log STE Uniform

91.6% 91.22%
(-0.17) (-0.55)
68.51% 65.47%
(-0.17) (-3.21)
69.868%  57.83%

(+0.11) (-10.93)

ResNet20 CIFAR 10 91.77%

ResNet20 CIFAR 100  68.68%

ResNet18 ImageNet 69.76%

the compression of weights almost twice as much as in case of classical 8-bit quantisation, while maintaining the
accuracy of the 8-bit (or even floating-point 32-bit) network.

A dedicated hardware module for MAC operation was also designed, in which the multiplication operation is
replaced by a bit-shift operation (schematic shown in the left-hand side of Figure 2.I). A comparison was made
between hardware-designed computational elements for 4-bit weights and 8-bit activations for linear, PoT, APoT
quantisation, and with the standard computational element for a model with weights and activations both linearly
quantised to 8-bit width. Thus, it is shown that the module for 4-bit PoT quantisation uses the smallest number
of electronic components, which also translates into several times lower energy requirements: 6x for PoT versus
8x8 linear MAC and 2x versus 4x8 linear MAC. Extensive description of the proposed training method, hardware
design, experiments and more quantitative results are included in the paper [Przewtocka-Rus et al., 2022] (TinyML
Research Symposium 2022, USA), prepared during a research internship at Meta Reality Labs (formerly Facebook
Reality Labs) in 2022.

Next, a hardware implementation of the PoT convolution layer, with appropriate weight encoding, in the Zynq
UltraScale+ MPSoC ZCU104 platform was proposed (a simplified schematic is shown in the right-hand side of the
Figure 2.T)). It was shown that a layer using a MAC module dedicated for PoT quantisation - named a Bitshift and

INT4 weights FP scaling
|NT3% biés ‘fact‘ors‘
PE INT32 INT8
| :;ia\;’ ;Tizl: PE INT32 ReQ INT8
PE INT32 INT8

Simplified Linear Layer

Figure 2.1: Simplified quantised neural network layer with a MAC element based on logarithmic PoT quantisation.
After loading the appropriate weights and biases from memory, the elements process the activations from the
previous layer using an efficient bit-shift operation. The output activations are then re-quantised using appropriate

scaling values.

Accumulate (BAC) module - uses about 0.6 of the energy required for the standard MAC layer, for 8-bit activations

D. Przewlocka-Rus Deep neural networks quantization and acceleration
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and 4-bit weights, while increasing possible operation frequency of the chip.

To extend the generality of PoT quantisation towards the possibilities guaranteed with linear quantisation,
methods of pruning and layer fusion were proposed to enable further reductions in memory-computation complex-
ity.

For low bit-widths, linear quantisation introduces automatic pruning of values smaller than the lowest quanti-
sation level, without affecting the final number of quantisation levels. This is different for logarithmic quantisation,
where automatic pruning has no place, and direct zeroing of weights with the lowest values leads to a reduction in
the number of quantisation levels (which can have a significant impact on the accuracy of the solution). To enable
correct pruning for logarithmic quantisation, a double normalisation method was therefore proposed, introducing
a death zone of a fixed width, moving the smallest quantisation level further away from zero. With this trick, it is
possible to prune weights similarly to linear quantisation: without reducing the number of quantisation levels, and,
as shown in the experiments, for redundant networks, such as ResNet20 for the CIFAR10 dataset, it is possible to
prune more than 40% of connections without any loss in network accuracy (with 70% of pruned weights, the loss
was less than a percentage point). A detailed description of the pruning method, as well as experiments with con-
volution layer acceleration using the BAC module, are available in the paper [Przewlocka-Rus and Kryjak, 2022a],
published at the International Conference on Computer Vision and Graphics (ICCVG) 2022.

Furthermore, to reduce the number of computations during inference, fusion of convolution layers with batch

normalisation layers is usually performed, according to the Equation (2.2):

—Leomw ZH gV g
Yon = \/0'27—67 oz K 0?2 —¢

where T .on+ 18 the output of convolution layer. Therefore weights w and bias b are properly modified for inference:

Wfysed = \/072776 * W OrazZ b fysed = b — [ \/;;j + (. Obviously, such a modification does not affect the accuracy

+8 (2.2)

of the neural network, but it reduces the number of multiplication and addition operations, and the number of
parameters. Introducing exactly such a fusion into a PoT network would cause the weights to no longer be in the
form of powers of two, and therefore the important property enabling the use of BAC computational elements
would be lost. To reduce the number of operations it is therefore proposed to introduce two different manipulations
leading to similar simplifications. As the bias is not quantised logarithmically, it can be successfully modified
according to the scheme known from standard fusion method. However, the weight-related multiplier is instead
merged with the scaling factor of the quantisation operation. In this way, all additional calculations associated
with the batch normalisation layer are reduced to a minimum, with only a slight increase in memory complexity
compared to the model after full/standard fusion — instead of a single scaling factor for the entire layer, each output
map has a separate one.

All of the proposed methods allow to design efficient computer vision systems with a SOTA ratio of model
complexity and computational architecture to solution accuracy, as shown in the example of the mixed precision
model (4-bit PoT weights, 8-bit linearly quantised activations) of PowerYOLO for pedestrian and vehicle detec-
tion. The proposed solution achieved an accuracy of mAP50-95 0.301 (8.3% decrease with relation to the baseline
model), while reducing the size by 8x, and introducing significant simplifications in the computational architec-
ture by changing the multiplication operation to a bit-shift operation. Detailed descriptions of the methods and
quantitative results are available in [Przewtocka-Rus and Kryjak, 2023] published at the 26th Euromicro Confer-
ence on Digital System Design (DSD) in 2023, and [[Przewlocka-Rus et al., 2024]| published at the 27th Euromicro
Conference on Digital System Design (DSD) in 2024.

In summary, new methods for training PoT neural networks and other methods to further reduce their memory-
computational complexity were proposed, analogous to the practices standard for linear quantisation (pruning,
layers fusion), but adapted to this special logarithmic quantisation scheme. The first such comprehensive study on

the implementation of the PoT neural networks in embedded devices was conducted, demonstrating the energy and
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Table 2.3: Post-implementation resources usage for custom XNOR convolutional neural network accelerator im-
plemented in Zynq UltraScale+ MPSoC ZCU104

Resource  Utilisation Available Utilisation %

LUT 79302 230400 34.42
LUTRAM 350 101760 0.34
FF 44170 460800 9.59
BRAM 152 312 48.72
DSP 902 1728 52.20

frequency gains compared to a standard linear quantisation scheme, resulting from the use of the BAC element. It
is also shown that PoT quantisation for low bit-widths maintains accuracy on par with the full precision models, in
opposition to linear quantisation. The results as a whole demonstrate the viability of using the proposed methods

in the design of real-time vision systems for low-power embedded devices.

2.2. Other quantisation schemes

A number of experiments using other quantisation schemes were also proposed: radical binary quantisation
(XNOR neural networks) and linear quantisation. Special attention was given to the possibilities of accelerating
such models in FPGA/SoC devices for advanced vision systems, showing how such applications can be imple-
mented, and the energy gains resulting from the choice of an appropriate platform.

For the traffic sign detection system, a hardware accelerator for XNOR neural network was designed (details
in [[Przewtocka and Kryjak, 2019] from 2019 Conference on Design and Architectures for Signal and Image Pro-
cessing (DASIP) and [Przewlocka-Rus et al., 2021]] from 2021 International Conference on Computer Recognition
Systems (CORES)), with activations and weights in binary form, and thus allowing the convolution operation to
be reduced to one given by Equation where W, X and N are respectively: a flattened vector of weights, input

activations and the size of the convolution window.
Y = BitCount(XdW) << 2 - N (2.3)

The accelerator was implemented in a semi-pipelined manner: the computations in each convolution layer are
parallelised filter-wise, and each output map is written to dedicated BRAM, as shown in Fig.[2.2] For the proposed
binary network architecture (similar to the LeNet5 network, and achieving an accuracy of 96.28% on a GTSRB
dataset [Houben et al., 2013]), for a 32x32 input, the accelerator running on a Zynq UltraScale+ MPSoC ZCU104
platform allowed the processing of almost 450 FPS with a power consumption of 4.396W, and clock frequency

100MHz. The summary of post-implementation resources usage for the designed accelerator is presented in Table

23l

As the field of neural network acceleration in embedded devices is in dynamic development, in the meantime
open-source libraries Brevitas and FINN were released, allowing the training and implementation of different pre-
cision networks in Xilinx AMD MPSoC platforms. These tools allow the use of linear quantisation and different
bit-widths for weights and activations, including enabling XNOR networks. A comparison experiment was there-

fore carried out for the traffic sign detection system, designing a second solution with the aforementioned libraries.

D. Przewlocka-Rus Deep neural networks quantization and acceleration
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Figure 2.2: A simplified scheme of the designed semi-pipelined XNOR convolutional neural network accelerator.

The proposed architecture consists of three main components: Convolutional Blocks for convolutional and batch
normalisation layers computations, Dense Blocks for fully connected layers and BRAM sets for inputs and outputs
from layers. The operations in layers are streamlined, and the data flow is organised using properly designed data

controllers.

The network trained with the Brevitas tool achieved a lower accuracy (95%), while with the appropriate configura-
tion of the accelerator generated by the FINN tool, a detector processing over 580 FPS with an energy consumption

of 3.547W was proposed (increasing the energy efficiency by more than 1.2 with relation to the previous solution).

Using the same tools, a number of experiments on acceleration of object tracking systems were conducted,
in particular for the solution marking SOTA at the start of the research, based on Siamese Neural Networks
[Bertinetto et al., 2016f]. Detailed descriptions can be found in ([[Przewtocka et al., 2020] published at the ICCVG
2020 conference, [Przewlocka-Rus and Kryjak, 2021] published at the 31st International Conference on Field-
Programmable Logic and Applications (FPL) in 2021, and [[Przewlocka-Rus and Kryjak, 2022b]] published at the
DASIP 2022 conference. It should be emphasised that acceleration of Siamese-based tracking algorithms has not
previously been the subject of research reported in the international literature. Also worth noting is the existing gen-
eral disparity in the availability of software solutions (accelerated with power-hungry high-end GPUs) using com-
plex machine learning algorithms, compared to their efficient implementation in low-power devices. The conducted
research was designed to help closing this gap. The experiments showed that for redundant architectures (so-called
big neural networks), linear quantisation of the hidden layers can positively affect the accuracy of the model. In
addition, special attention was given to the challenges of direct implementation of SOTA solutions in FPGA/SoC

devices and the necessity of the hardware aware algorithm co-design approach. An alternative Siamese network
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Table 2.4: Post-implementation resources usage for Siamese neural network implemented in Zynq UltraScale+
MPSoC ZCU104 using FINN tool

Resource  Utilisation Available Utilisation %

LUT 154068 230400 66.87
LUTRAM 12760 101760 12.54
FF 105984 460800 23

BRAM 173 312 55.45

architecture was proposed that reduces the number of parameters 6.7 times relative to the [Bertinetto et al., 2016]
benchmark solution, while still guaranteeing high tracking accuracy, with a decrease of only 6% relative to the

benchmark solution. As mentioned earlier, the need to design compact architectures is driven by the limited num-

/Read image Target Write image to\

from SD card Useeips localisation SD card
Crop and Cross
resize correlation
Pack data — FIN.N Beceleraton Unpack data
(convolutional neural network) Py

PL

Figure 2.3: Overview of the proposed hardware-software system. A single branch of the Siamese network is ac-
celerated using the FINN framework in PL (Programmable Logic — FPGA chip). The Python script is run on the
ARM processor (Programming System — PS), handling the input and output, communicating with the accelerator

and post-processing the network output.

ber of computational elements in embedded platforms. A further reduction was made by quantising the weights
of the hidden layers to 4-bit integers, and the first and last layers to 8-bit integers, using linear quantisation. Thus,
a small architecture in terms of memory complexity was proposed, which allowed the tracking system to operate
with an accuracy close to the full-precision model (with a drop of less than 2%). The network was then acceler-
ated on the Zynq UltraScale+ MPSoC ZCU104 platform achieving almost 50 FPS (for input size 256x256) with a

power consumption of 5.5W, and clock frequency 100MHz. The resources usage is summarized in Table[2.4]

The full tracking algorithm, simplified to single-scale Region of Interest (ROI) processing, partially in the processor
part of the Zynq chip, achieves 17 FPS and consumes 5.5W, compared to the original system running on the
NVIDIA GeForce GTX Titan X with a power consumption of 250W (about 45 times more)) and achieving 83
FPS. The designed computational architecture for real time Siamese tracking with a neural network hardware
acceleration is presented in Fig. additional pre- and postprocessing operations, such as cropping ROI, cross
correlating known object features with network’s output and upsampling are done using the processor part of SoC

platform.
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2.3. Conclusions

Extensive descriptions of the research and results are available in the relevant publications gathered in the
Chapter[3] but nonetheless, as a summary of the conducted research and the proposed methods, two important facts
are worth emphasising. Firstly, as was shown with the work on logarithmic PoT quantisation, special quantisation
schemes tailored to the distribution of weights in the layers of neural networks can not only guarantee a much lower
decrease in accuracy than for linearly quantised models, with respect to the full precision model, but also allow
for significant simplifications in the computational architecture of neural network accelerators, leading to energy
gains. Secondly, methods for acceleration of advanced vision systems in FPGA/SoC devices were also developed,
proposing appropriate modifications of the SOTA solutions in such a way that their implementation in embedded
devices is feasible, also with the use of existing frameworks.

In summary, the author’s major original contributions include:

1. Methods for training neural networks with weights quantised to powers of two values, enabling accuracy
on par with full precision models even for low bit-width (4 bits), which is difficult to achieve using linear

quantisation.

2. Design of a hardware architecture that implements a MAC operation for PoT networks using bit-shifting
instead of multiplication. The proposed single computational element for 4x8 quantisation (width of weights
x width of activations) allows a reduction in energy requirements of 2x relative to the module for a linearly

quantised model with the same bit widths.

3. Design of a hardware architecture for the PoT convolution layer that uses about 0.6 of the energy required

for the standard layer and increases the operating frequency range.

4. Method of convolution and batch normalisation layers fusion, taking into account a special form of PoT

neural network.

5. A series of experiments and analysis of the impact of different quantisation schemes (linear, logarithmic),
with different target bit-widths, for neural networks used in advanced vision systems, to assess the impact

on the accuracy, memory-computational complexity and energy efficiency of such systems.

6. Design of software-hardware advanced and energy-efficient neural networks-based vision systems: traffic

sign detection, object tracking and pedestrian and vehicle detection.

The proposed quantisation methods and their appropriate use to reduce the memory and computational com-
plexity of the selected neural network models, together with appropriate computational architecture, enable the
implementation of real-time vision systems in low-power devices, proving the validity of the thesis. The results
of the above described research were published in a series of 9 publications summarised in Table [2.3] together
with the number of citations (total: 41 (37), as of 30th of July 2024, the number without self-citations is given in
brackets).
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Table 2.5: Simplified list of publications of the presented series, with number of citations (without autocitations in

brackets)

Reference Title Citations

[Przewtocka and Kryjak, 2019] XNOR CNNs in FPGA: real-time detection and 1 (1)
classification of traffic signs in 4K — a demo

[Przewtocka et al., 2020] Optimisation of a Siamese neural network for real- 6 (5)
time energy efficient object tracking

[Przewtocka-Rus and Kryjak, 2021]] Quantised Siamese tracker for 4K/UltraHD video 0 (0)
stream — a demo

[Przewtocka-Rus et al., 2021]] Exploration of hardware acceleration methods for 0 (0)
an XNOR traffic signs classifier

[Przewtocka-Rus et al., 2022]] Power-of-two quantization for low bitwidth and 25 (23)
hardware compliant neural networks

[Przewlocka-Rus and Kryjak, 2022b]  Towards real-time and energy efficient Siamese 4 (4)
tracking — a hardware-software approach

[Przewlocka-Rus and Kryjak, 2022a]]  Energy efficient hardware acceleration of neural 3 (2)
networks with power-of-two quantisation

[Przewlocka-Rus and Kryjak, 2023 Power-of-Two Quantized YOLO Network for Pedes- 2 (2)
trian Detection with Dynamic Vision Sensor

[Przewlocka-Rus et al., 2024]| PowerYOLO: Mixed Precision Model for Hardware n/a

Efficient Automotive Detection with Event Data
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3. Publication Series - Full Texts

This chapter contains the full texts of the publications that form this dissertation. The publications are arranged

chronologically and are preceded by a table listing the author’s contributions to each article.

Table 3.1: Listing of the author’s contribution to each publication in the presented series

Publication Contr. % Detailed contribution
Dominika Przewlocka, Marcin Kowalczyk 75%
and Tomasz Kryjak, ’XNOR CNNs in development and training of bi-
FPGA: real-time detection and classifica- nary (XNOR) traffic sign classi-
tion of traffic signs in 4K — a demo’, in fier suitable for implementation
DASIP 2019: Conference on Design and Ar- in embedded devices
chitectures for Signal and Image Processing, ) )
16-18 October 2019, Montréal, Canada hardware implementation of traf-
fic sign detection algorithm in
FPGA device
hardware implementation of
convolution and fully connected
blocks specific for XNOR
networks
analysis of the results and prepa-
ration of the publication
Dominika Przewlocka, Mateusz Wasala, Hu- 50%

bert Szolc, Krzysztof Btachut and Tomasz
Kryjak, ’Optimisation of a Siamese neu-
ral network for real-time energy efficient
object tracking’, in Chmielewski, L.J., Koz-
era, R., Ortowski, A. (eds) Computer Vi-
sion and Graphics. ICCVG 2020. Lecture
Notes in Computer Science, vol 12334.
Springer, Cham., DOI10.1007/978-3—
030-59006-2_14

proposition of appropriate archi-

tecture of neural network

scheduling and analyzing results

of all experiments

preparation of the publication

Continued on next page


DOI 10.1007/978-3-030-59006-2_14
DOI 10.1007/978-3-030-59006-2_14

22

Table 3.1: Listing of the author’s contribution to each publication in the presented series (Continued)

Publication Contr. %  Detailed contribution
Dominika Przewlocka-Rus and Tomasz 90%
Kryjak, ’Quantised Siamese tracker for development and training of
4K/UltraHD video stream - a demo’, quantised Siamese neural net-
in 2021 3l1st International Conference on work
Field-Programmable Logic and Applications L .
designing hardware architecture
(FPL), 30 August - 3 September 2021, Dres- .
of Siamese neural network based
den, Germany. E-ISBN 978-1-6654-3759-2,
tracker for 4K/UHD data stream
DOI10.1109/FPL53798.2021.00089
comparative implementation
with FINN tool
analysis of the results and prepa-
ration of the publication
Dominika Przewlocka-Rus, Marcin Kowal- 75%

czyk and Tomasz Kryjak, ’Exploration of
hardware acceleration methods for an
XNOR traffic signs classifier’, in Choras,
M., Choras, R.S., Kurzynski, M., Trajdos, P,
Pejas, J., Hyla, T. (eds) Progress in Image
Processing, Pattern Recognition and Commu-
nication Systems. CORES IP&C ACS 2021.
Lecture Notes in Networks and Systems,
vol 255. Springer, DOI:10.1007/978-3—
030-81523-3_4

design and implementation of
hardware accelerator of XNOR

neural networks

development and training of
XNOR traffic sign classifier

hardware acceleration of traf-
fic sign classifier with the de-
signed architecture and FINN
tool; comparison of both ap-

proaches

analysis of the results and prepa-

ration of the publication

Continued on next page
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Table 3.1: Listing of the author’s contribution to each publication in the presented series (Continued)

Publication Contr. % Detailed contribution
Dominika Przewtocka-Rus, Syed Shakib 80%
Sarwar, H. Ekin Sumbul, Yuecheng Li proposition of 2 different meth-
and Barbara De Salvo, ’Power-of-two ods for training PoT quantised
quantization for low bitwidth and hard- neural networks
ware compliant neural networks’, in o )
) ) designing the hardware architec-
TinyML Research Symposium 2022, 28 .
. ture of 3 processing elements
march 2022, San Jose, USA (available ] i ]
. for MAC operation with weights
online: https://cms.tinyml.org/ ) ) ]
quantised using linear, PoT and
wp—content /uploads/talks2022/
APoT schemes
2203.05025.pdf)
demonstration of reduction in
computational and memory
complexity
analysis of the results and prepa-
ration of the publication
Dominika Przewtocka-Rus and Tomasz Kry- 90%

jak, ’Towards real-time and energy ef-
ficient Siamese tracking — a hardware-
software approach’ in Desnos, K., Pertuz,
S. (eds) Design and Architecture for Signal
and Image Processing. DASIP 2022. Lec-
ture Notes in Computer Science, vol 13425.
Springer, Cham., DOI1:10.1007/978-3~
031-12748-9_13

hardware-software implementa-
tion of Siamese neural net-
work based tracker on MPSoC
ZCU104 platform

designing the Siamese neural
network with reduced computa-

tional and memory complexity

analysis of the results and prepa-

ration of the publication

Continued on next page
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Table 3.1: Listing of the author’s contribution to each publication in the presented series (Continued)

Publication Contr. %  Detailed contribution

Dominika Przewlocka-Rus and Tomasz 90%

Kryjak, ’Energy efficient hardware accel- designing the hardware architec-

eration of neural networks with power- ture of BAC processing element

of-two quantisation’, in Chmielewski, L.J., as essential processing element

Ortowski, A. (eds) Computer Vision and in convolution layers of PoT net-

Graphics. ICCVG 2022. Lecture Notes in works, with proper weight en-

Networks and Systems, vol 598. Springer, coding

Cham., DOI10.1007/978-3-031- . )

IS5 TG hardware implementation of
convolution layer with BAC
element and comparison with
linearly quantised layer
proposition and development of
proper for PoT neural networks
pruning algorithm
analysis of the results and prepa-
ration of the publication

Dominika Przewlocka-Rus and Tomasz Kry- 90%

jak, ’Power-of-Two Quantized YOLO Net-
work for Pedestrian Detection with Dy-
namic Vision Sensor’, in 26th Euromicro
Conference on Digital System Design (DSD),
6-8 September 2023, Durres, Albania

development of pedestrian detec-
tion system with YOLO network
quantised to 4-bit PoT weights,
using event data from DVS sen-

sor

training of the quantised neural

network

analysis of the results and prepa-

ration of the publication

Continued on next page
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Table 3.1: Listing of the author’s contribution to each publication in the presented series (Continued)
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and Marek Gorgon, ’PowerYOLO: Mixed * design of mixed precision YOLO
Precision Model for Hardware Efficient network, with 4-bit PoT weights
Automotive Detection with Event Data’, in and remaining parameters quan-
27th Euromicro Conference on Digital System tised to 8 bits for pedestrian and
Design (DSD), 28-30 August 2024, Sorbonne vehicles detection using event
University, Paris, France data

e proposition of convolution and
batch normalisation layers fu-

sion appropriate for PoT weights

* training of the quantised neural

network

e analysis of the results and prepa-

ration of the publication
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