
AGH University of Krakow

FIELD OF SCIENCE ENGINEERING AND TECHNOLOGY

SCIENTIFIC DISCIPLINE AUTOMATION, ELECTRONICS, ELECTRICAL
ENGINEERING AND SPACE TECHNOLOGIES

DOCTORAL THESIS

Event-Based Machine Learning with Bayesian Methods
and Spiking Neural Networks

Author: Mateusz Pabian, MSc

First supervisor: Prof. Mirosław Pawlak, DSc
Assisting supervisor: Dominik Rzepka, PhD

Completed in: AGH University of Krakow, Faculty of Electrical Engineering,
Automatics, Computer Science and Biomedical Engineering

Krakow, 2024

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

DZIEDZINA NAUK INŻYNIERYJNO-TECHNICZNYCH

DYSCYPLINA AUTOMATYKA, ELEKTRONIKA, ELEKTROTECHNIKA
I TECHNOLOGIE KOSMICZNE

ROZPRAWA DOKTORSKA

Uczenie maszynowe dla danych zdarzeniowych przy
pomocy metod bayesowskich oraz impulsowych sieci

neuronowych

Autor: mgr inż. Mateusz Pabian

Promotor rozprawy: prof. dr hab. Mirosław Pawlak
Promotor pomocniczy: dr inż. Dominik Rzepka

Praca wykonana: Akademia Górniczo-Hutnicza im. Stanisława Staszica
w Krakowie, Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii

Biomedycznej

Kraków, 2024

I would like to express my deepest gratitude to my
supervisor, Prof. Mirosław Pawlak, for his patient
guidance, thoughtful feedback and constructive
criticism throughout my PhD studies. Addition-
ally, this endeavor would not have been possible
without my assisting supervisor, Dr. Dominik
Rzepka, who inspired me to start this journey
and was always eager to discuss and refine
research ideas. Lastly, I would like to thank my
family, friends, and everyone else who supported
me along the way. You helped me grow into the
person I am today, for which I am forever grateful.

The research that contributed to this thesis
was supported by the Polish National Science
Centre under Grant DEC-2017/27/B/ST7/03082.

Abstract

With the rising volume of data processed by modern measurement and IT systems there is a
need for the development of scalable machine learning solutions analyzing event data. While
existing methods can be adapted to process such types of data, doing so introduces redundancy.
And so, algorithms that are dedicated to sparse, event-based data representations are required.

The aim of this dissertation is to discuss the applicability of two different approaches to
machine learning from event data. The classical theory of point processes is used extensively
in computational neuroscience to describe spiking patterns; nevertheless, its application to
supervised temporal sequence classification is surprisingly under-developed. Conversely, the
artificial spiking neural networks (SNN) are more widely used. However, these models are
usually trained by simulating the state of the entire network over time. For efficiency, the training
procedure should instead consider the network state only at event occurrence. Furthermore, it
is unclear how the signal-to-spike conversion process impacts the trained model performance
when extracting event sequences from analog and digital data.

The aforementioned knowledge gaps are addressed using statistical analysis and numerical
simulations. Classification rules for point processes are proposed based on the Bayes theory of
classification. This algorithm is subsequently analyzed in terms of the rate of convergence to the
optimal Bayes risk as the number of training examples increases. The impact of boundary effects
on the kernel classifier performance is also assessed. In the scope of the SNN framework an
existing single-spike time-to-first-spike layer computation is parallelized to achieve a significant
speed-up compared to the original formulation. This model is further extended to process
multiple input events and generate multiple output events. Lastly, modifying the training
objective leads to the Siamese SNN model – the first-ever end-to-end training of a Siamese
network in the spiking domain.

The practical implications of this research are evaluated in three supervised machine learn-
ing tasks: social media bot detection, cosmic ray imaging artifact rejection, and in-roadway
sensor vehicle type identification. In all scenarios the impact of event sequence preprocessing
(including signal-to-spike conversion) and hyperparameter choice is assessed. Selecting such
distinct case-studies highlights the versatility of the methods developed in this thesis.

vii

Streszczenie

W związku z narastającą ilością danych przetwarzanych przez współczesne systemy informa-
tyczne i pomiarowe, nastaje konieczność opracowania skalowalnych metod uczenia maszyno-
wego analizujących dane zdarzeniowe. O ile możliwe jest przetworzenie tego rodzaju danych
przez klasyczne metody, ich użycie wymaga konwersji danych do postaci zawierającej redun-
dancję. Kluczowe jest zatem rozwijanie algorytmów dedykowanych do danych zdarzeniowych.

Celem tej rozprawy jest przeanalizowanie dwóch różnych podejść do tematu uczenia maszy-
nowego dla danych zdarzeniowych. Teoria procesów punktowych jest często wykorzystywana
w neurobiologii obliczeniowej do analizy impulsów, jednakże jej użycie w szerszym kontekście
nadzorowanej klasyfikacji szeregów czasowych jest zaskakująco rzadko spotykane. Z drugiej
strony, impulsowe sieci neuronowe cieszą się dużym zainteresowaniem badaczy, mimo iż ich
proces uczenia zwykle wymaga symulowania stanu całej sieci w każdej chwili czasowej, co
nie jest efektywnym wykorzystaniem zasobów obliczeniowych. Ponadto, nie jest jasne w jaki
sposób konwersja sygnału do postaci zdarzeniowej wpływa na działanie wyuczonego modelu.

Wyżej wspomniane problemy zaadresowano przy pomocy metod analizy statystycznej oraz
symulacji numerycznych. Zaproponowano reguły klasyfikacji procesów punktowych przy po-
mocy metod bayesowskich, a następnie przeanalizowano zbieżność algorytmu do ryzyka bay-
esowskiego w funkcji liczby przykładów uczących. Sprawdzono również wpływ efektów brze-
gowych na działanie klasyfikatora opartego o jądrowy estymator gęstości. W kontekście impul-
sowych sieci zrównoleglono algorytm obliczania wyjścia neuronu reagującego na czas wystą-
pienia impulsu wejściowego, co znacząco skróciło czas uczenia sieci. Ponadto rozszerzono ów
model o możliwość obserwowania i generowania wielu zdarzeń. Zdefiniowano również funkcję
kosztu, która umożliwia uczenie sieci syjamskiej bezpośrednio w dziedzinie zdarzeń.

Praktyczną stosowalność tych metod zweryfikowano w kontekście trzech problemów ba-
dawczych: identyfikacji botów w mediach społecznościowych, wykrywaniu artefaktów podczas
detekcji cząstek promieniowania kosmicznego oraz kategoryzacji pojazdów drogowych. W każ-
dym z tych scenariuszy sprawdzono wpływ reprezentacji sygnału w postaci zdarzeniowej oraz
hiperparametrów procesu uczenia na działanie gotowego modelu. Wybór tak zróżnicowanych
zastosowań dowodzi dużej uniwersalności opracowanych metod.

ix

List of Acronyms

ANN Artificial Neural Network
API application programming interface
BC-KDE boundary-corrected kernel density estimation
BPTT backpropagation through time
CDF cumulative distribution function
CNN convolutional neural network
CPU central processing unit
CR cosmic ray
CREDO Cosmic-Ray Extremely Distributed Observatory
DVS Dynamic Vision Sensor
DWT discrete wavelet transform
ECG electrocardiography
EMD Earth Mover’s Distance
EMG electromyography
IF Integrate-and-Fire
IL inductive loop
ISI interspike interval
IT information technology
ITS Intelligent Transportation System
KDE kernel density estimation
KL Kullback-Leibler [divergence]
k-NN k-nearest neighbors
LIF Leaky Integrate-and-Fire
LSTM long short-term memory
MCC Matthews correlation coefficient
MFCC mel-frequency cepstrum coefficients
MIMO multiple-input, multiple-output
NN neural network

xi

PCA principal component analysis
RBM restricted Boltzmann machine
ReLU rectified linear unit
RKHS reproducing kernel Hilbert space
RNN recurrent neural network
ROI region of interest
R-VMP resistive [component of the] vehicle magnetic profile
SGD stochastic gradient descent
SNN spiking neural network
SOM self-organizing map
SRM Spike Response Model
STPD spike-timing-dependent plasticity
SVM support vector machine
TEM time encoding machine
TICA temporal independent component analysis
VAE variational autoencoder
VMP vehicle magnetic profile
VP Victor-Purpura [distance]
X-VMP reactive [component of the] vehicle magnetic profile

xii

Contents

List of Acronyms xi

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Dissertation outline . 3

2 Bayes Rules for Spike Train Data Classification 7
2.1 Introduction . 8

2.1.1 Spike train probabilistic modeling . 8
2.1.2 Supervised classification: the point processes approach 9

2.2 Bayes classification rule . 10
2.2.1 Bayes rule convergence for simulated data 14

2.3 Plug-in classification rules . 17
2.4 Kernel classifier . 20

2.4.1 Kernel classifier convergence to the Bayes classification rule 22
2.4.2 Impact of boundary correction on algorithm performance 28

2.5 Applications – Twitter bot detection . 34
2.5.1 An overview of Twitter bot detection 35
2.5.2 Dataset description . 37
2.5.3 Data exploration & establishing a baseline classifier 38
2.5.4 Applying the proposed method . 39

2.6 Summary . 42

3 Spiking Neural Networks 45
3.1 Introduction . 46

3.1.1 Properties of biological networks . 46
3.1.2 Spiking neural networks . 48
3.1.3 Training the SNN with backpropagation 52
3.1.4 Signal propagation in the time-to-first-spike SNN 53

3.2 Overcoming the limitations of the model . 59
3.2.1 Reducing the layer processing time 61
3.2.2 Numerical instability resulting from absolute time event representation 79
3.2.3 Relaxing the neuron firing constraint 84
3.2.4 Signal propagation rules with multiple inputs & multiple outputs (MIMO) 88

3.3 Applications – Twitter bot detection . 96

xiii

3.3.1 Preprocessing . 96
3.3.2 SNN training objective . 99
3.3.3 Training setup & results . 101

3.4 Summary . 107

4 Siamese Spiking Neural Network 111
4.1 Introduction . 112

4.1.1 Spike train similarity . 112
4.1.2 Siamese neural networks . 113

4.2 Siamese SNN training objective . 117
4.2.1 Earth Mover’s Distance . 119

4.3 Exploring the properties of the Siamese SNN 120
4.3.1 Data preprocessing . 121
4.3.2 MNIST digit classification . 122
4.3.3 Spike train embedding visualization 124
4.3.4 Hidden layer activation sparsity . 124
4.3.5 Classifier time-performance . 126

4.4 Applications – CREDO artefacts rejection . 128
4.4.1 CREDO experiment description . 128
4.4.2 Data preprocessing . 130
4.4.3 Results & discussions . 131

4.5 Summary . 135

5 Event Sequence Classification for Multivariate Time Series 137
5.1 Introduction . 138

5.1.1 Event-triggered sampling . 138
5.1.2 Inductive loop vehicle magnetic profiles (VMP) 141

5.2 Vehicle type identification based on the VMP signal 142
5.2.1 Choosing the signal-to-spike encoding parameters 144
5.2.2 Vehicle type identification with the MIMO SNN 152

5.3 Summary . 158

6 Conclusions and Future Work 161

Bibliography 165

xiv

Chapter 1

Introduction

1.1 Background

Event-driven systems are often encountered in science and engineering. In such arrangements
data points represent temporal sequences of discrete events, with each event composed of
three descriptors: a timestamp, an event category, and a value [1, 2]. The latter two pieces of
information may be provided implicitly: some systems register only a single type of event, others
do not define event values (with a binary indicator of event occurrence or its implied absence).
Event data is natural in scenarios such as modeling customer behavior in banking [3, 4] or
social networks [5], analyzing the activity of malicious agents in cybersecurity applications [6],
log-based anomaly and fault detection [7], and knowledge discovery and health state prediction
from electronic health records [8, 9, 10].

Another type of event data arises by discretizing an analog signal into a set of predefined
events based on some criteria. Monitoring the activity of neural populations in neuroscientific
studies is a prime example of this type of event data [11]. Neurons communicate via an action
potential – a sudden change of membrane voltage of a given cell that travels down an axon to
propagate the signal to other cells – called a spike due to its characteristic shape. Electrodes
recording a change in voltage of a neural tissue register a superposition of the activity of different
neurons. Identifying individual neurons from a superimposed voltage recording based on their
properties (shape, latency) is done using a process called spike sorting [12]. Once complete,
the individual signals are represented in an abstract way as sequences of spikes called spike
trains, highlighting the importance of spikes as the information carrier in neural populations.
These sequences encode the state of the network as well as details about the triggering signal
(stimulus). This information is known as the neural code [13].

The empirical findings related to the neural code used in human perception can be applied
to construct event sensors [14]. In contrast to typical sensors that register a uniformly-sampled

1

2 Chapter 1. Introduction

signal, they apply data-driven dynamic sampling. This form of encoding has three main
advantages over uniformly-sampled data: wide dynamic range, focus on the informative data,
and low latency due to asynchronous communication. These principles have been applied to
construct neuromorphic vision [15], hearing [16], smell [17] and touch [18] sensors.

Notably, registering event streams using a neuromorphic device is not a prerequisite to
obtaining an event dataset. In case such data is unavailable (e.g., due to its proprietary nature),
it is possible to transform existing sets of data to an event structure using software simula-
tions [19, 20], or custom hardware-based conversion systems [21]. Software simulations can
be used to design event-sampling hardware, or to implement new event-based signal processing
algorithms even when the hardware is not yet available. Therefore, it presents the opportunity
to conduct a proof of concept study prior to the expensive process of hardware implementa-
tion. Conversely, hardware-based conversion systems additionally allow to more realistically
approximate the noise associated with signal acquisition, which can result in variations of event
latency, missing or even spurious events. In addition to the benefits associated with event data
relative to uniformly-sampled data, the signal-to-event dataset conversion paradigm encourages
the comparison between typical and event-based algorithms acting on the same underlying
signal.

1.2 Motivation

This thesis considers the problem of applying machine learning techniques to event-type data.
A core objective of machine learning is to generalize task-solving capabilities, that were learned
during the training procedure, to unseen data. To train any machine learning model – be it in
a supervised or an unsupervised paradigm – it is necessary to specify a set of features present
in the data. However, defining “features” of event data is elusive. Such data is, by definition,
sparse and of undefined dimensionality. Take for example a time series of a hospital patient
health record:

• samples of laboratory diagnostics are not taken at the exact same time of the day (leading
to data that is non-uniformly distributed in time),

• some tests are rarely repeated (meaning that data points lack complete information, which
causes data sparsity).

Admittedly, event data can be modified in a way that allows it to be processed by classical ma-
chine learning methods. Doing so circumvents its event nature (e.g., by introducing additional
features that encode time-of-event or no change or data resampling), which in turn discards the
succinctness inherently present in event data. And so, to avoid data redundancy, we need a
computational model that is dedicated to sparse, event-based data representations.

1.3. Dissertation outline 3

In light of these observations, the focus of this work is on two different approaches to
training machine learning models on spike train data. A classical solution based on the
theory of point processes attempts to describe the inherent randomness of the observed spiking
patterns. Despite extensive use in the computational neuroscience field of research to model
the underlying biological processes, this methodology is surprisingly under-developed in terms
of its use in solving supervised machine learning problems. Given this research gap, it is
imperative to develop fundamental training rules on simple spike train datasets, as well as
assess the bounds on model performance with respect to the observation period length and
training dataset size.

The other approach considered in this thesis are the artificial spiking neural networks
(SNN), hailed as the new, biologically-inspired generation of artificial neural networks. This
methodology has emerged quite recently by adapting deep learning concepts to incorporate
sophisticated computational neuron models. In contrast to the point-process-theory-based
approach, there already exist multiple streams of research dedicated to applying these models
to the supervised and unsupervised learning problems. The vast majority of the SNN models
are trained on traditional von Neumann architecture, and so it is necessary to simulate the
evolving state of the entire network over time. Ideally, the training process itself should mimic
the sparsity of event data – by considering the network state only at time-instants related to
event occurrence – but it is not the case in such training simulations. There is a pressing need
to design both signal propagation and training rules that conform to these requirements.

By analyzing these two approaches in parallel it is possible to assess their applicability
to practical problems, noting the degree of customization and robustness that they exhibit.
And so, in addition to the fundamental properties of these models, it is crucial to develop
a methodology that evaluates the performance of event-centric machine learning models in
general. Furthermore, it is equally important to consider the impact of event-triggered data
acquisition on model performance. This stems from the fact that some spike train data can
be obtained by event-based sampling of the underlying analog signal, or by conversion of its
digital version. Understanding how data encoding impacts the downstream model performance
should be a factor that contributes to the broader measurement system design scope.

1.3 Dissertation outline

The main results of this study are described in four parts:

• Chapter 2 considers the classical approach of event sequence classification based on the
theory of point processes. We derive an optimal classification rule in terms of intensity
functions and propose a general class of plug-in nonparametric rules from multiple

4 Chapter 1. Introduction

replications of spiking processes. A kernel classifier is introduced as an example of the
latter approach. These findings are supported by a set of finite sample simulation studies.
We show that the proposed kernel rule converges to the optimal Bayes classifier as the
number of training examples increases. Additionally, we assess the impact of boundary
effects on the classifier performance when the length of the event observation interval is
sufficiently short. Lastly, the proposed approach is applied to real data in a Twitter bot
classification task. In this specific task the observation window is quite long, with events
occurring at timescales differing by many orders of magnitude. The results regarding the
convergence of the kernel classifier to the optimal classification rule for point processes
described in this Chapter was presented in [22].

• Chapter 3 focuses on applying spiking neural networks to machine learning problems
for event data. It discusses an existing single-spike time-to-first-spike SNN model and
identifies limitations of this model that stem from its assumptions. Based on this discus-
sion, we propose several modification that alleviate these shortcomings by reducing its
processing time, stabilizing training dynamics, allowing a finer control over the spiking
activity, and proposing a framework for processing signals varying over time. This last
point is described in terms of iterating over a space of events, which stands in contrast
to other SNN models that iterate over discretized time. Finally, the performance of the
proposed SNN is evaluated on the aforementioned Twitter bot classification task. Re-
using the same dataset allows us to compare the point process and SNN approaches, and
discuss their applicability to other tasks.

• Chapter 4 shows how adapting spike train similarity measures used in neuroscientific
research allows us to construct a Siamese SNN. This leads to the first-ever Siamese net-
work trained end-to-end in the spiking domain. The proposed methodology is evaluated
on two image datasets. First, we use the MNIST digit dataset, known to be a relatively
simple benchmark that promotes conducting reproducibility studies. The impact of the
number of output neurons on the classifier performance, network spiking activity and
prediction latency is assessed. Secondly, the Siamese SNN is applied to the problem
of differentiating signal from artefacts in the context of cosmic ray detection on images
taken by modern smartphones. This peculiar dataset is a representative example of the
Siamese SNN applicability as the images themselves contain a very small informative
region of interest compared to the total image area, making the image data sparse. Our
findings regarding the Siamese SNN model properties on the MNIST and CREDO data
were published in [23, 24].

• Chapter 5 presents a case-study that applies the SNN model to vehicle type identifica-
tion problem. Various event-triggered sampling schemes with the ability to convert a

1.3. Dissertation outline 5

multivariate time series into event sequences are discussed. We select a subset of such
methods and show how to determine the parameters of the sampling scheme such that
information important for the downstream classification task is preserved. Moreover, we
train the SNN models on the produced event sequences, and relate the model classific-
ation performance of trained SNN models with the number of events produced by the
selected event-triggered sampling schemes. This allows to assess the different conversion
methods in terms of their efficiency.

Note that each subsequent chapter builds upon the results presented in the earlier sections.
Finally, Chapter 6 presents a summary of the conducted research, as well as the proposed
directions for future work.

Chapter 2

Bayes Rules for Spike Train Data
Classification

Spike train data find a growing list of applications in computational neuroscience, imaging,
streaming data and finance. Statistical analysis of spike trains is based on various probabilistic
and neural network models. The statistical approach relies on parametric or nonparametric
specifications of the underlying model. The goal of this Chapter is to develop a rigorous
classification methodology based on the Bayes theory of classification [25] for the two-class
classification problem for a class of spike train data characterized by nonparametricaly specified
intensity functions. This strategy can be applied to research problems where event occurrence
is the primary information carrier [5, 26].

In Section 2.2 we derive the optimal Bayes classification rule in terms of class intensity
functions for such processes, as well as assess the limit behavior of the Bayes rule with respect
to the increasing length of the observation interval. The theoretical findings related to the
Bayes risk convergence are supported by simulated data study described in Section 2.2.1. In
Section 2.3 a general plug-in nonparametric classification rule from multiple replications of
spiking processes is proposed. This is followed in Section 2.4 by the asymptotically optimal
result of the kernel classification rule, i.e., the convergence of the kernel rule to the Bayes
rule. This outcome can be considered as the counterpart of the result in [27] concerning the
classical plug-in nonparametric classification rules defined in the finite-dimensional Euclidean
space. The obtained results are supported by a finite sample simulation studies, with the
impact of the number of training examples and the sequences observation time assessed in
Section 2.4.1, whereas Section 2.4.2 focuses on the impact of boundary effects on the classifier
performance. Lastly, the proposed approach is applied to real data in a Twitter bot classification
task (Section 2.5).

7

8 Chapter 2. Bayes Rules for Spike Train Data Classification

2.1 Introduction

2.1.1 Spike train probabilistic modeling

The mathematical framework for describing event data is the point process theory [28]. A
temporal spiking process {𝑁 (𝑡), 𝑡 ≥ 0} consists of a sequence of random times {𝑡𝑖} of isolated
events in time such that 𝑁 (0) = 0. The process 𝑁 (𝑡) can be defined by the counting function

𝑁 (𝑡) =
∑︁
𝑖

1 (𝑡𝑖 ≤ 𝑡) , (2.1)

which is the number of events in [0, 𝑡]. Assuming that the process is observed on a time
window [0, 𝑇] – which is certainly the case in practical machine learning applications in which
the analysis is conducted on a finite sample of data points – the process 𝑁 (𝑡) can be represented
by a variable-length vector X = [𝑡1, . . . , 𝑡𝑁 ; 𝑁], where 0 < 𝑡1 < · · · < 𝑡𝑁 < 𝑇 are the event
times, and𝑁 = 𝑁 (𝑇). Writing [𝑡1, . . . , 𝑡𝑁 ; 𝑁]we emphasize the fact that the data vector consists
of two parts: the occurrence times {𝑡1, . . . , 𝑡𝑁 } and 𝑁 being the number of events in [0, 𝑇]. The
former is the continuous part of the vector X, whereas the latter is its discrete part. Therefore, the
spike train data are characterized by variable-length continuous-discrete observation vectors.
The spike train can be equivalently described in terms of interarrival times with event occurrence
times {𝑡1, 𝑡2, . . . , 𝑡𝑁 } substituted with their differences {𝑡1, 𝑡2 − 𝑡1, . . . , 𝑡𝑁 − 𝑡𝑁−1} also called
interspike intervals (ISI) or waiting times between successive events.

Temporal point processes can also be described in terms of an intensity function 𝜆(𝑡) which
describes the local (in time) arriving rate of events. In general, the intensity function is

𝜆(𝑡 |𝐻𝑡) = lim
∆𝑡→0

1
∆𝑡

P (𝑁 (𝑡 + ∆𝑡) − 𝑁 (𝑡) = 1|𝐻𝑡) , (2.2)

with 𝐻𝑡 being the history of all events which occurred before time 𝑡. The degree of dependence
on the process history varies between different point process types. A simple example of a
model that is conditioned on the entire history is the Hawkes process that models self-exciting
phenomena, i.e., the occurrence of an event increases the probability that another event will
occur in the near future [29]. When 𝜆(𝑡 |𝐻𝑡) = 𝜆(𝑡 |𝑡𝑁𝑡

), i.e., the instantaneous intensity rate
depends on the time of the last spike before 𝑡, and when the ISI are i.i.d., the process is called
a renewal process. Finally, a temporal process that is memoryless (independent of its history),
has i.i.d. ISI, and satisfies the property

E [𝑁 (𝑇)] =
∫ 𝑇

0
𝜆(𝑢)𝑑𝑢 (2.3)

is a nonhomogeneous Poisson process. Note that the point process intensity need not be
a deterministic function, with Cox process being an important example that describes point
processes in which the intensity measure is itself a Poisson process [30].

2.1. Introduction 9

0 2 4 6 8 10
0

1
a)

0 2 4 6 8 10
0

3

6

Ev
en

t c
ou

nt

b)

0 2 4 6 8 10
Time

0.0

0.5

1.0

In
te

ns
ity

c)

Figure 2.1: Descriptors of a point process for a given spike train. a) Event occurrence times
{𝑡1, 𝑡2, . . . , 𝑡𝑁 } (vertical, in blue) and interspike intervals {𝑡1, 𝑡2 − 𝑡1, . . . , 𝑡𝑁 − 𝑡𝑁−1} (horizontal, in
orange). b) Counting process. c) Point process intensity function.

Figure 2.1 summarizes the different ways to describe a single point process realization (i.e.,
the spike train). In fact, different spike train descriptors are used in the methodologies presented
in subsequent Sections and Chapters of this Thesis. The rest of this Chapter shows how point
process realizations can be classified by applying intensity function estimation from event times.
Chapter 3 focuses on the underlying event occurrence time representation of the point process
processed by artificial spiking neurons exhibiting the memoryless property. It also provides
further context for the application of the theory of point processes in neuroscience. Lastly,
Chapter 4 shows how the counting function can be used to analyze the similarity of spike trains
produced by the proposed spiking neural network.

2.1.2 Supervised classification: the point processes approach

Before moving on to the description of classification methods designed and evaluated in this
Chapter, it is important to note that there are actually two different types of point process
“classification” problems that can be studied. Given that this field of research for temporal
point processes – i.e., the focus of our work – is surprisingly poorly developed, we shall
include additional examples derived from spatial point processes analyses to elucidate different
methods, as well as potential applications of such research.

The first type of classification problem concerns itself with assigning a class label to every
event separately. In such type of event classification it is assumed that the observed events were
generated by two or more point processes superimposed on one another. In spatial point process
analysis this approach can be used to determine the position of fault lines from the earthquake
occurrence data [31], estimate a minefield [32, 33], or reject artefacts when dating glacial

10 Chapter 2. Bayes Rules for Spike Train Data Classification

environments [34]. These methods are additionally accompanied by local clutter removal using
a k-Nearest Neighbor (k-NN) classifier. Event classification can also be used to analyze data
exhibiting a temporal structure. For example, to infer the sentiment of comments in Twitter
discussion threads [35], or to find outliers in an event stream [36].

On the other hand, point process “classification” can also mean predicting the class identity
for the entire event sequence or the complete set of events (in the temporal and spatial contexts,
respectively). Regardless of whether the data exhibits temporal or spatial structure, three main
method types can be identified. The most common are distance-based approaches [37, 38, 39,
40, 41] as they do not attempt to use the probabilistic model of the underlying point process prior
to classification (although the classifier performance can be improved by choosing a distance
measure that is appropriate for a given data distribution). Conversely, the nonparametric [40, 42]
and maximum likelihood [43, 44] estimation methods model the probabilistic properties of the
point processes based on the observed event sequences (or event sets). In all these methods it is
important to increase the total number of events observed in a given temporal or spatial interval.
Typically it is done by using the replicates of the spiking process – different realizations of the
same point process.

This Thesis is entirely focused on the second scenario of classifying entire spike train
sequences to individual point process categories.

2.2 Bayes classification rule

The goal of this Section is to develop a rigorous classification methodology for temporal
Poisson processes based on the Bayes theory of classification [25]. We consider the two-class
classification problem (which can be extended to the multi-class problem) where class labels
are denoted as 𝜔1, 𝜔2 with the prior probabilities 𝜋1, 𝜋2, respectively. Let us assume that the
point process is observed on the time window [0, 𝑇] and is characterized by a non-random
intensity function 𝜆(𝑡) that is defined for all 𝑡 ≥ 0, such that (2.3) describes the the average
number of events in [0, 𝑇]. For example, consider the intensity function

𝜆(𝑡; 𝜙) = 1.6 + cos
(
𝜋

4
√

3
𝑡 + 𝜙

)
+ 0.5 cos

(
𝜋

3
√

2
𝑡 + 𝜋

4
+ 𝜙

)
. (2.4)

Various choices of 𝜙 define 𝜆1(𝑡), 𝜆2(𝑡). One can repeatedly sample a new spike train from
point processes according to 𝜆1(𝑡) or 𝜆2(𝑡). As mentioned in the previous Section, the task of
classification considered in this work is to analyze each individual spike train and determine
whether it was generated by a point process specified by either 𝜆1(𝑡) or 𝜆2(𝑡). This machine
learning problem is illustrated in Figure 2.2.

2.2. Bayes classification rule 11

0 10 20 30 40 50
Time

0

1

2

3

In
te
ns
ity

a)

ϕ= 1
16π

ϕ= 1
2π

λ1= λ(t;ϕ= 1
16π)

b)

λ2= λ(t;ϕ= 1
2π)

0 2 4 6 8 10
Time

Figure 2.2: a) A pair of intensity functions (2.4) parameterized by 𝜙. b) Sampling new spike trains
according to the intensity function.

In order to form the optimal Bayes rule we recall the well-known result [45] on the joint
occurrence density of the spike train X = [𝑡1, . . . , 𝑡𝑁 ; 𝑁]

𝑓 (x) =
𝑁∏
𝑖=1

𝜆(𝑡𝑖)exp
(
−

∫ 𝑇

0
𝜆(𝑢)𝑑𝑢

)
(2.5)

for 𝑁 = 𝑁 (𝑇) ≥ 1, whereas if 𝑁 = 0 then 𝑓 (𝑥) = exp
(
−

∫ 𝑇
0 𝜆(𝑢)𝑑𝑢

)
. It is worth noting

that (2.5) is a continuous-discrete distribution and by virtue of (2.5) the marginal density of the
occurrence times {𝑡1, . . . , 𝑡𝑁 } for 𝑁 ∈ {0, 1, . . .} is given by

∞∑︁
𝑛=0

𝑓 (𝑡1, . . . , 𝑡𝑁 ; 𝑁 = 𝑛) = exp
(
−

∫ 𝑇

0
𝜆(𝑢)𝑑𝑢

)
+ exp

(
−

∫ 𝑇

0
𝜆(𝑢)𝑑𝑢

) ∞∑︁
𝑛=1

𝑛∏
𝑗=1
𝜆(𝑡 𝑗) , (2.6)

which is defined over the simplex regions C𝑛 = {(𝑡1, . . . , 𝑡𝑛) : 0 ≤ 𝑡1 ≤ . . . ≤ 𝑡𝑛 ≤ 𝑇} ,
𝑛 = 1, 2, The formula in (2.6) defines the proper density over {C𝑛}, i.e., we have

exp
(
−

∫ 𝑇

0
𝜆(𝑢)𝑑𝑢

)
+ exp

(
−

∫ 𝑇

0
𝜆(𝑢)𝑑𝑢

) ∞∑︁
𝑛=1

∫
C𝑛

𝑛∏
𝑗=1
𝜆(𝑡 𝑗)𝑑𝑡1 · · · 𝑑𝑡𝑛 = 1 . (2.7)

In the context of the classification problem the occurrence densities in (2.5) will be de-
noted 𝑓1(x) and 𝑓2(x) depending on whether X comes from class 𝜔1 (denoted as X ∈ 𝜔1) or

12 Chapter 2. Bayes Rules for Spike Train Data Classification

if X ∈ 𝜔2, respectively. The corresponding class intensities 𝜆1(𝑡), 𝜆2(𝑡) are nonnegative func-
tions defined on [0,∞). Then using (2.5), one can form the optimal Bayes rule 𝜓∗

𝑇
: X ∈ 𝜔1

if
𝑁∏
𝑖=1

𝜆1(𝑡𝑖)
𝜆2(𝑡𝑖)

exp
(∫ 𝑇

0
[𝜆2(𝑢) − 𝜆1(𝑢)] 𝑑𝑢

)
≥ 𝜋2
𝜋1
. (2.8)

assuming that 𝑁 ≥ 1 and exp
(∫ 𝑇

0 [𝜆2(𝑢) − 𝜆1(𝑢)] 𝑑𝑢
)
≥ 𝜋2

𝜋1
if 𝑁 = 0. Clearly, if the reverse

inequality in (2.8) holds, then we classify X to 𝜔2. The log transform of (2.8) gives the
alternative convenient form of the rule 𝜓∗

𝑇
, i.e., X ∈ 𝜔1 if

𝑁∑︁
𝑖=1

log
(
𝜆1(𝑡𝑖)
𝜆2(𝑡𝑖)

)
≥ 𝛾 , (2.9)

where 𝛾 =
∫ 𝑇
0 [𝜆1(𝑢) − 𝜆2(𝑢)] 𝑑𝑢 + log

(
𝜋2
𝜋1

)
.

For our further considerations it is useful to represent the class intensity functions in terms
of the so-called intensity factor 𝜏 and shape function 𝑝(𝑡) [46]. Thus, let 𝜆1(𝑡) = 𝜏1𝑝1(𝑡),
𝜆2(𝑡) = 𝜏2𝑝2(𝑡), where

𝜏𝑖 =

∫ 𝑇

0
𝜆𝑖 (𝑢)𝑑𝑢, 𝑝𝑖 (𝑡) = 𝜆𝑖 (𝑢)/𝜏𝑖 , 𝑖 = 1, 2 . (2.10)

Clearly 𝑝1(𝑡), 𝑝2(𝑡) are probability density functions on [0, 𝑇] that reflect the functional shape
of the intensity functions. On the other hand the intensity factor measures the average number of
events in the observation interval [0, 𝑇]. Equation (2.10) allows us to represent the classification
problem in terms of the class intensity factors and shape densities. In fact, using (2.10), we can
rewrite the rule in (2.9) as follows, 𝜓∗

𝑇
: X ∈ 𝜔1 if

𝑁∑︁
𝑖=1

log
(
𝑝1(𝑡𝑖)
𝑝2(𝑡𝑖)

)
≥ 𝜂 , (2.11)

where 𝜂 = 𝜏1 − 𝜏2 + 𝑁 log
(
𝜏2
𝜏1

)
+ log

(
𝜋2
𝜋1

)
. The Bayes rule 𝜓∗

𝑇
in (2.11) will be written as

𝑊𝑇 (X) ≥ 𝜂𝑇 emphasizing the fact the vector X is observed within the time window [0, 𝑇].
The risk associated with the rule 𝜓∗

𝑇
(x) in (2.11) is defined as R∗

𝑇
= P(𝜓∗

𝑇
(X) ≠ 𝑌) and

is referred as the Bayes risk. Here 𝑌 ∈ {𝜔1, 𝜔2} is the true class label of X. For our future
studies we express the Bayes risk in terms of the decision function𝑊𝑇 (X), i.e., we write

R∗𝑇 = P (W𝑇 (X) ≥ 𝜂𝑇 |X ∈ 𝜔2) 𝜋2 + P (W𝑇 (X) < 𝜂𝑇 |X ∈ 𝜔1) 𝜋1 . (2.12)

It is an important question to evaluate the Bayes risk. This includes various bounds on R∗
𝑇

and
the behavior of R∗

𝑇
as a function of𝑇 . In order to do so, we need to introduce some assumptions.

2.2. Bayes classification rule 13

1) First, let us note that the log-ratio log
(
𝜆1 (𝑡)
𝜆2 (𝑡)

)
or equivalently log

(
𝑝1 (𝑡)
𝑝2 (𝑡)

)
is generally an

unbounded function. To prevent a singularity it suffices to assume that the class intensities
𝜆1(𝑡), 𝜆2(𝑡) are bounded away from zero. This is commonly true for intensity functions.
All these restrictions can be formalized by assuming that there exist positive numbers 𝛿
and 𝐶 such that

A1 : 0 < 𝛿 ≤ 𝜆𝑖 (𝑡) ≤ 𝐶, 𝑖 = 1, 2, for all 𝑡 ≥ 0 . (2.13)

We refer to [47, 48] for some weaker conditions for the existence of the aforementioned
log-ratio.

2) Furthermore, we need to put some condition on the growth of the class intensity functions.
Hence, let us assume that there exists positive number 𝑑 such that

A2 :
1
𝑇

∫ 𝑇

0
𝜆𝑖 (𝑢)𝑑𝑢 → 𝑑, 𝑖 = 1, 2 as 𝑇 →∞ . (2.14)

The meaning of this condition is that the number of events from the each class increases
linearly with 𝑇 . It is worth mentioning that the condition in A2 does not hold if the
intensity functions are integrable on (0,∞). This, e.g., takes place if 𝜆1(𝑡), 𝜆2(𝑡) have a
compact support.

Then under the assumptions A1 and A2, it can be shown that the Bayes risk (2.12) tends to
zero as 𝑇 →∞. Hence, we have the following result.

Theorem 1. Let assumptions A1 and A2 hold. Then

R∗𝑇 → 0 as 𝑇 →∞ with the rate 𝒪 (1/𝑇) .

The proof of Theorem 1 is given in [49].

The convergence of the Bayes risk R∗
𝑇

to zero is mostly determined by the condition in A2.
This is due to the fact that the class intensity functions 𝜆1(𝑡), 𝜆2(𝑡) must grow with increasing𝑇 .
If A2 does not hold, e.g, if 𝜆1(𝑡), 𝜆2(𝑡) are compactly supported then the convergence of R∗

𝑇
to

zero is impossible. It is also possible to have a nonzero limit Bayes risk if the class intensity
functions overlap for some large value of 𝑡, i.e., if 𝜆1(𝑡) = 𝜆2(𝑡) for 𝑡 ≥ 𝑇0 for some large 𝑇0.

It is worth mentioning that the asymptotic optimality does not hold if one observes a
single long realization of the underlying spiking process. In fact, the intensity estimation
problem for spiking processes does not fall into the classical large-sample, smaller-distance-
between-sample-points framework as the point process is casual in time [50]. Hence, for a fixed
observation interval one must increase the number of events. This can be achieved by either
scaling the intensity function or by using the replicates of the spiking process (i.e., different

14 Chapter 2. Bayes Rules for Spike Train Data Classification

realizations of the same spiking process). The former approach is based on the multiplicative
intensity model due to Aalen [51], whereas the latter one (used in this work) is the standard
machine learning strategy, where the replicates form the training set.

2.2.1 Bayes rule convergence for simulated data

The purpose of the simulated data study is to illustrate the findings expressed in Theorem 1
for some set of point process intensity function pairs. Doing so requires not only computing
the Bayes risk R∗

𝑇
but also to show that R∗

𝑇
→ 0 as 𝑇 → ∞. To establish this, we resort to

estimating R∗
𝑇

for different values of 𝑇 using a Monte Carlo simulation. First, let us focus on
answering the question: given an intensity function pair 𝜆1(𝑡), 𝜆2(𝑡), how many spike trains
are needed to estimate the Bayes risk (2.12)?

Simulation 1. Denote D𝑃 = {(X1, 𝑌1), . . . , (X𝑃, 𝑌𝑃)} as a sample of 𝑃 independ-
ent observations of the spiking processes. Here X 𝑗 is the variable-length vector, i.e.,
X 𝑗 =

[
𝑡
[𝑗]
1 , . . . , 𝑡

[𝑗]
𝑁 [𝑗]

; 𝑁 [𝑗]
]

and 𝑌 𝑗 ∈ {𝜔1, 𝜔2}, where 𝑁 [𝑗] = 𝑁 [𝑗] (𝑇). Without the loss of
generality, we assume 𝜋1 = 𝜋2 = 0.5, which implies that the factor 𝑃2 represents the number of
examples sampled per class. Then, the simulation procedure can be summarized as follows:

1) Specify the number of simulation repetitions 𝜉; intensity function pair 𝜆1(𝑡), 𝜆2(𝑡);
sequence observation interval [0, 𝑇]; and the total number of sampled spike trains 𝑃.

2) Construct a simulation grid {𝑃1, 𝑃2, . . . , 𝑃𝐾 } ∈ (0, 𝑃] specifying 𝑘 ∈ {1, . . . , 𝐾} points
at which to evaluate the classification rule.

3) For every repetition of the experiment:
a) Simulate 𝑃

2 spike trains according to the intensity function 𝜆1(𝑡), and 𝑃
2 examples

according to 𝜆2(𝑡).

b) At each point 𝑃𝑘 of the grid:
i. Select a subset of spike trains that is valid for the current simulation evaluation

point, i.e., D𝑃𝑘
= {(X1, 𝑌1), . . . , (X𝑃𝑘

, 𝑌𝑃𝑘
)} ⊂ D𝑃.

ii. Compute the classifier prediction according to the rule (2.11) for every pair
(X 𝑗 , 𝑌 𝑗) ∈ D𝑃𝑘

.

iii. Compute empirical risk (2.12) based on classifier decisions for the 𝑃𝑘 spike
trains.

4) Compute the mean and standard deviation of the empirical risk over 𝜉 repetitions.
Then the mean empirical risk over 𝜉 repetitions E

[
R𝑇,𝑃

]
is the Monte Carlo estimate of the

Bayes risk R∗
𝑇

for fixed 𝑇 . Note that for every repetition of the experiment, this simulation
protocol reuses some sequences whenever the effective sample size 𝑃𝑘 increases. This simulates
the scenario in which the classifier has to change its historic prediction as the number of

2.2. Bayes classification rule 15

5 10 20 50 100 200 500 1000 2000 5000
Number of examples per class P2

0.0

0.1

0.2

0.3

0.4

0.5

Ri
sk

a)

0.1 0.2 0.5 1 2 5 10 20 50 100 200 500 1000
Simulation time

0.0

0.1

0.2

0.3

0.4

0.5

Ri
sk

b)

ϕ2 / ϕ1 = 16
ϕ2 / ϕ1 = 8

ϕ2 / ϕ1 = 4
ϕ2 / ϕ1 = 2

Figure 2.3: The results of Monte Carlo simulations for the two-class classification problem for several
intensity function pairs (2.15) parameterized by 𝜙. a) Risk versus 𝑃 for a fixed 𝑇 = 10. b) Bayes risk R∗

𝑇

versus 𝑇 . Dashed vertical line at 𝑇 = 10 denotes the simulation space slice presented in the top row.

observation increases. An alternative, incorrect, approach would be to sample 𝑃𝑘 new examples
at every point of the simulation grid.

Figure 2.3a presents the results of Simulation 1 for 𝑇 = 10 conducted for the intensity
function

𝜆(𝑡; 𝜙) = 1.6 + cos
(
𝜋

4
√

3
𝑡 + 𝜙

)
+ 0.5 cos

(
𝜋

3
√

2
𝑡 + 𝜋

4
+ 𝜙

)
. (2.15)

Various choices of 𝜙 define 𝜆1(𝑡; 𝜙1), 𝜆2(𝑡; 𝜙2). It is clear that as 𝜙2 → 𝜙1 the classification
problem becomes more difficult to solve, given that the spike trains sampled from 𝜆1(𝑡; 𝜙),
𝜆2(𝑡; 𝜙) become more similar to one another. The sequence observation time 𝑇 was selected
such that in neither scenario the empirical risk is zero in order to show that E

[
R𝑇,𝑃

]
→ R∗

𝑇
as

𝑃→∞. The results also illustrate that R∗
𝑇

is higher for difficult classification problem.
The aforementioned results established that for 𝑇 = 10 the Monte Carlo simulation

classification rule risk is reasonably close to the Bayes risk for 𝑃 = 104 for all intensity function
pairs parameterized by 𝜙. We set 𝑃 = 104 in all subsequent experiments. Next, we wish to

16 Chapter 2. Bayes Rules for Spike Train Data Classification

show that R∗
𝑇
→ 0 as 𝑇 →∞.

Simulation 2. The simulation procedure can be summarized as follows:
1) Specify the number of simulation repetitions 𝜉; intensity function pair 𝜆1(𝑡), 𝜆2(𝑡);

sequence observation interval [0, 𝑇]; and the total number of sampled spike trains 𝑃 (large
enough that the risk estimate converges to the Bayes risk according to Simulation 1).

2) Construct a simulation grid {𝑇1, 𝑇2, . . . , 𝑇𝐾 } ∈ [0, 𝑇] specifying 𝑘 ∈ {1, . . . , 𝐾} points
at which to evaluate the classification rule.

3) For every repetition of the experiment:
a) Simulate 𝑃

2 spike trains according to the intensity function 𝜆1(𝑡), and 𝑃
2 examples

according to 𝜆2(𝑡).

b) At each point 𝑇𝑘 of the grid:
i. Select a subset of events that is valid for the current simulation evaluation

point, i.e., find X 𝑗 ,𝑇𝑘 =

[
𝑡
[𝑗 ,𝑇𝑘]
1 , . . . , 𝑡

[𝑗 ,𝑇𝑘]
𝑁 [𝑗,𝑇𝑘]

; 𝑁 [𝑗 ,𝑇𝑘]
]

such that 𝑡 [𝑗 ,𝑇𝑘]
𝑁 [𝑗,𝑇𝑘]

≤ 𝑇𝑘 ,
for all X 𝑗 ∈ D𝑃.

ii. Compute the classifier prediction according to the rule (2.11) for every pair
(X 𝑗 ,𝑇𝑘 , 𝑌 𝑗) ∈ D𝑃.

iii. Compute empirical risk (2.12) based on the classifier decisions for the 𝑃 spike
trains.

4) Compute the mean and standard deviation of the empirical risk over 𝜉 repetitions.
Then the mean empirical risk over 𝜉 repetitions E

[
R𝑇,𝑃

]
is the Monte Carlo estimate of

the Bayes risk. Note that by reusing an existing sequence whenever the effective observation
interval [0, 𝑇𝑘] increases we simulate the scenario in which the classifier has to update its
historic prediction due to new evidence.

Figure 2.3b presents the results of Simulation 2 conducted for the intensity function (2.15)
for different values of the ratio 𝜙2/𝜙1. The curves computed over 𝜉 repetitions of the experiment
lack variability which confirms that 𝑃 = 104 is enough to estimate the Bayes risk for this intensity
function. The results also show that the Bayes risk tends to zero as 𝑇 gets larger. The slowest
decay of R∗

𝑇
is seen for very close intensities 𝜙2/𝜙1 = 2 (in red), whereas the fast rate of

convergence is observed for distant intensities 𝜙2/𝜙1 = 16 (in blue).
To strengthen our analysis, we opt to apply Simulations 1-2 to additional classes of intensity

functions. The functions used are summarized in Table 2.1. Note that all of them meet
assumptions A1 and A2 and also they do not overlap for 𝑡 ≥ 𝑇0 for some large 𝑇0. The
simulation results for binary classification problems constructed from these intensity functions
is presented in Figure 2.4. Each row corresponds to a different intensity function pair. Left

2.3. Plug-in classification rules 17

Table 2.1: Additional set of intensity functions used in the simulated data study for the Bayes risk
convergence.

a) 𝜆(𝑡; 𝑟) = 𝑟

b) 𝜆(𝑡; 𝑟) = (𝑟 + 1) + 𝑟 cos
(

2𝜋
30 𝑡 + 2.6

)
+ cos

(
2𝜋
28 𝑡 + 4.5

)
c) 𝜆(𝑡; 𝜙) =

[
3.1 + 3 cos

(
𝜋

3
√

2
𝑡 + 𝜙

)]1/2

d) 𝜆(𝑡; 𝜙) = 1.3 exp
[
cos

(
𝜋

3
√

2
𝑡 + 𝜙

)]
e) 𝜆(𝑡; 𝜙) = 0.1 + 0.5 mod [𝑡 + 𝜙, 2𝜋]

column presents a condensed version of the result related to the convergence of Monte Carlo risk
estimate to the Bayes risk versus 𝑃 first shown in Figure 2.3a. Boxplots summarize how quickly
each simulation run achieved the Bayes risk. Based on these results it was determined that
𝑃 = 104 is enough to estimate the Bayes risk in the Simulation 2. The Bayes risk convergence
plots on the right provide further evidence that R∗

𝑇
→ 0 as𝑇 →∞, with the rate of convergence

depending on the difficulty of the classification problem.
Let us briefly show a counter-example for which the Bayes risk is nonzero∀𝑇 > 0. Consider

the intensity function
𝜆(𝑡; 𝑐, 𝑑) = 𝑐 exp

[
−𝑑 (𝑡 − 0.5)2

]
, (2.16)

which clearly does not satisfy the assumptions A1 and A2. While the intensity function has an
infinite support, in practice it is extremely unlikely for events to occur outside of some narrow
time interval. Figure 2.5 the results of Simulation 2 for several combinations of parameters
𝑐, 𝑑. In all scenarios risk decreases for 𝑡 ∈ [0, 1] which corresponds to the domain of (2.16)
in which the vast majority of events occur. For 𝑡 > 1 almost no new events can be observed,
therefore the Bayes risk reaches a plateau.

2.3 Plug-in classification rules

In practice one does not know the true class intensities functions and must rely on some training
data in order to form a data-driven classification rule. This work applies the plug-in strategy to
design a classifier, i.e., the classifier that is the empirical counterpart of the optimal Bayes rule
in (2.11). We have already pointed out that the single-sample based intensity function estimate
cannot be consistent unless there is a certain multiplicative mechanism that makes the intensity
function increase, see [51] for the multiplicative intensity model approach. Therefore, in this

18 Chapter 2. Bayes Rules for Spike Train Data Classification

5
10
20
50

100
200
500

1000
2000
5000

Nu
m

be
r o

f e
xa

m
pl

es
pe

r c
la

ss
 P 2

to
 e

st
im

at
e

Ba
ye

s r
isk

a)

0.1 1 10 100 1000
0.0

0.1

0.2

0.3

0.4

Ri
sk

r2 / r1 = 10
r2 / r1 = 5
r2 / r1 = 2

r2 / r1 = 10
r2 / r1 = 5
r2 / r1 = 2

5
10
20
50

100
200
500

1000
2000
5000

Nu
m

be
r o

f e
xa

m
pl

es
pe

r c
la

ss
 P 2

to
 e

st
im

at
e

Ba
ye

s r
isk

b)

0.1 1 10 100 1000
0.0

0.1

0.2

0.3

0.4

0.5
Ri

sk

r2 / r1 = 10
r2 / r1 = 5
r2 / r1 = 2

r2 / r1 = 10
r2 / r1 = 5
r2 / r1 = 2

5
10
20
50

100
200
500

1000
2000
5000

Nu
m

be
r o

f e
xa

m
pl

es
pe

r c
la

ss
 P 2

to
 e

st
im

at
e

Ba
ye

s r
isk

c)

0.1 1 10 100 1000
0.0

0.1

0.2

0.3

0.4

0.5

Ri
sk

ϕ2 / ϕ1 = 16
ϕ2 / ϕ1 = 8
ϕ2 / ϕ1 = 4
ϕ2 / ϕ1 = 2

ϕ2 / ϕ1 = 16
ϕ2 / ϕ1 = 8
ϕ2 / ϕ1 = 4
ϕ2 / ϕ1 = 2

5
10
20
50

100
200
500

1000
2000
5000

Nu
m

be
r o

f e
xa

m
pl

es
pe

r c
la

ss
 P 2

to
 e

st
im

at
e

Ba
ye

s r
isk

d)

0.1 1 10 100 1000
0.0

0.1

0.2

0.3

0.4

0.5

Ri
sk

ϕ2 / ϕ1 = 16
ϕ2 / ϕ1 = 8
ϕ2 / ϕ1 = 4
ϕ2 / ϕ1 = 2

ϕ2 / ϕ1 = 16
ϕ2 / ϕ1 = 8
ϕ2 / ϕ1 = 4
ϕ2 / ϕ1 = 2

5
10
20
50

100
200
500

1000
2000
5000

Nu
m

be
r o

f e
xa

m
pl

es
pe

r c
la

ss
 P 2

to
 e

st
im

at
e

Ba
ye

s r
isk

e)

0.1 1 10 100 1000

Simulation time

0.0

0.1

0.2

0.3

0.4

0.5

Ri
sk

ϕ2 / ϕ1 = 16
ϕ2 / ϕ1 = 8
ϕ2 / ϕ1 = 4
ϕ2 / ϕ1 = 2

ϕ2 / ϕ1 = 16
ϕ2 / ϕ1 = 8
ϕ2 / ϕ1 = 4
ϕ2 / ϕ1 = 2

Figure 2.4: The results of Monte Carlo simulations for the two-class classification problem for different
intensity functions. Each row corresponds to a different function presented in Table 2.1. Left column:
boxplots summarizing how quickly the simulation over 𝑃 converges to Bayes risk for fixed 𝑇 . Right
column: Bayes risk R∗

𝑇
versus 𝑇 . Dashed vertical line at 𝑇 = 1 (first row) and 𝑇 = 10 (other rows)

denote the simulation space slice presented in the left column.

2.3. Plug-in classification rules 19

0.1 0.2 0.5 1 2 5 10 20 50 100 200 500 1000
Simulation time

0.0

0.1

0.2

0.3

0.4

Ri
sk

c1 = 300, c2 = 600, d2 / d1 = 2
c1 = 30, c2 = 60, d2 / d1 = 2

c1 = 300, c2 = 600, d2 / d1 = 4
c1 = 30, c2 = 60, d2 / d1 = 4

Figure 2.5: Bayes risk R∗
𝑇

versus 𝑇 for the two-class classification problem specified by intensity
functions (2.16) parameterized by 𝑐, 𝑑.

thesis we consider the intensity estimation model based on the increasing number of replicates
of the class spiking processes.

Hence, let D𝐿 = {(X1, 𝑌1), . . . , (X𝐿 , 𝑌𝐿)} be the learning sequence as a sample of 𝐿 inde-
pendent observations of the spiking processes. Recall from Section 2.2.1 that X 𝑗 is the variable-
length vector, i.e., X 𝑗 =

[
𝑡
[𝑗]
1 , . . . , 𝑡

[𝑗]
𝑁 [𝑗]

; 𝑁 [𝑗]
]

and 𝑌 𝑗 ∈ {𝜔1, 𝜔2}, where 𝑁 [𝑗] = 𝑁 [𝑗] (𝑇) and
𝑗 = 1, . . . , 𝐿. Hence, all data are measured in the fixed time window [0, 𝑇]. Let 𝐿1, 𝐿2 be the
number of training data of classes 𝜔1 and 𝜔2, respectively.

We wish to form the plug-in classification rule based on the optimal decision given in (2.11).
This requires estimating the class intensity functions 𝜆1(𝑡), 𝜆2(𝑡), or equivalently the shape
densities 𝑝1(𝑡), 𝑝2(𝑡) and the corresponding intensity factors 𝜏1, 𝜏2. It is known that the prior
probabilities can be estimated by �̂�1 = 𝐿1/𝐿 and �̂�2 = 𝐿2/𝐿. In order to estimate (𝜏𝑖 , 𝑝𝑖 (𝑡))
one can begin with the use of a single sample X 𝑗 . Note that E

[
𝑁 [𝑗] |𝜔𝑖

]
= 𝜏𝑖 and one can

form the unbiased estimate of 𝜏𝑖 as �̂� [𝑗]
𝑖

= 𝑁 [𝑗] . However, Var
[
𝑁 [𝑗] |𝜔𝑖

]
= 𝜏𝑖 and this is an

inconsistent estimate of 𝜏𝑖 . The latter fact results from the local Poisson behavior of the spiking
process [49]. Nevertheless, the aggregation of �̂� [𝑗]

𝑖
leads to consistent estimate of 𝜏𝑖 for the

increased size of the training set. Hence, let

�̂�𝑖 =
1
𝐿𝑖

𝐿∑︁
𝑗=1

𝑁 [𝑗]1(𝑌 𝑗 = 𝜔𝑖) (2.17)

be an estimate of 𝜏𝑖 , 𝑖 = 1, 2. It is easy to show that �̂�𝑖 is a consistent estimate of 𝜏𝑖 . This
results from the fact that E [�̂�𝑖] = 𝜏𝑖 and Var [�̂�𝑖] = 𝒪 (1/𝐿). In an analogous way we can deal
with the problem of estimating 𝑝𝑖 (𝑡). Let 𝑝 [𝑗]

𝑖
(𝑡) be a certain nonparametric estimate of 𝑝𝑖 (𝑡)

based on a single sample X 𝑗 from the class𝜔𝑖 . We only consider the estimates that are positive,

20 Chapter 2. Bayes Rules for Spike Train Data Classification

i.e., 𝑝 [𝑗]
𝑖
(𝑡) ≥ 0. Then, the aggregated estimate of 𝑝𝑖 (𝑡) takes the following form

𝑝𝑖 (𝑡) =
1
𝐿𝑖

𝐿∑︁
𝑗=1

𝑝
[𝑗]
𝑖
(𝑡)1(𝑌 𝑗 = 𝜔𝑖), 𝑖 = 1, 2 . (2.18)

Plugging (2.17) and (2.18) into (2.11) gives us the following empirical classification rule 𝜓𝐿,𝑇 :
classify X = [𝑡1, . . . , 𝑡𝑁 ; 𝑁] ∈ 𝜔1 if

𝑊𝐿,𝑇 (X) ≥ 𝜂𝐿,𝑇 , (2.19)

where 𝑊𝐿,𝑇 (X) =
∑𝑁
𝑖=1 log

(
𝑝1 (𝑡𝑖)
𝑝2 (𝑡𝑖)

)
, 𝜂𝐿,𝑇 = �̂�1 − �̂�2 + 𝑁 log

(
�̂�2
�̂�1

)
+ log

(
𝐿2
𝐿1

)
. In Section 2.4

we propose a concrete kernel-type estimate of the shape densities or equivalently the class
intensity functions.

In this section we refer to the general result on the convergence of the rule 𝜓𝐿,𝑇 to the
Bayes decision 𝜓∗

𝑇
. This result is in the spirit of the Bayes risk consistency theorem established

in [27] in the context of the standard fixed dimension data sets. Let P(𝜓𝐿,𝑇 (X) ≠ 𝑌 |D𝐿) be
the conditional risk associated with the rule 𝜓𝐿,𝑇 . By (𝑃) we denote the weak convergence (in
probability).

Theorem 2. Assume that for 𝑖 = 1, 2

A3 : sup
𝑡∈[0,𝑇]

|𝑝𝑖 (𝑡) − 𝑝𝑖 (𝑡) | → 0 (𝑃) (2.20)

as 𝐿 →∞. Then,
R𝐿,𝑇 → R∗𝑇 (𝑃)

as 𝐿 →∞.
The proof of Theorem 2 is given in [49].

The result of Theorem 2 assures the convergence of the plug-in classification rule to the
optimal Bayes decision if the class shape densities (or equivalently the class intensity functions)
have uniformly consistent estimates. This fact should be verified for the particular type of shape
densities estimates. We will do so in the next section in the context of the kernel estimates.

2.4 Kernel classifier

It is known [52, 50] that the intensity function of a point process can be efficiently estimated
by a class of kernel methods [53, 54]. In particular, the standard convolution kernel estimate of
𝜆𝑖 (𝑡) from a single realization X 𝑗 =

[
𝑡
[𝑗]
1 , . . . , 𝑡

[𝑗]
𝑁 [𝑗]

; 𝑁 [𝑗]
]

takes the form

𝜆
[𝑗]
𝑖
(𝑡) =

𝑁 [𝑗]∑︁
𝑙=1

𝐾ℎ

(
𝑡 − 𝑡 [𝑗]

𝑙

)
1
(
𝑌 𝑗 = 𝜔𝑖

)
, 𝑖 = 1, 2 . (2.21)

2.4. Kernel classifier 21

Here 𝐾ℎ (𝑡) = ℎ−1𝐾 (𝑡/ℎ), where the kernel 𝐾 (𝑡) is assumed to be a symmetric probability
density function. Examples of proper kernel functions include the so-called Epanechnikov
kernel

𝐾 (𝑡) = 3
4

(
1 − 𝑡2

)
1 (|𝑡 | ≤ 1) (2.22)

and the Gaussian kernel
𝐾 (𝑡) = 1

√
2𝜋

exp
(
−1

2
𝑡2

)
. (2.23)

The crucial tuning parameter ℎ is called the bandwidth as it controls the level of smoothing via
the scaled kernel 𝐾ℎ (𝑡).

The parameter 𝜏𝑖 can be estimated (from a single sample) by �̂� [𝑗]
𝑖

= 𝑁 [𝑗] . Therefore (2.21)
yields the following estimate of the shape density

𝑝
[𝑗]
𝑖
(𝑡) = 1

𝑁 [𝑗]

𝑁 [𝑗]∑︁
𝑙=1

𝐾ℎ

(
𝑡 − 𝑡 [𝑗]

𝑙

)
1
(
𝑌 𝑗 = 𝜔𝑖

)
. (2.24)

As we have already pointed in Section 2.3, the estimates 𝜆[𝑗]
𝑖
(𝑡), 𝑝 [𝑗]

𝑖
(𝑡) cannot be consistent by

merely increasing 𝑇 . To overcome this problem one can utilize the observed multiple training
vectors and aggregate the single-sample estimates

{
𝜆
[𝑗]
𝑖
(𝑡)

}
,

{
𝑝
[𝑗]
𝑖
(𝑡)

}
. This leads to the

following aggregated kernel estimate of 𝑝𝑖 (𝑡)

𝑝𝑖 (𝑡) =
1
𝐿𝑖

𝐿∑︁
𝑗=1

𝑝
[𝑗]
𝑖
(𝑡)1

(
𝑌 𝑗 = 𝜔𝑖

)
. (2.25)

Moreover, the aggregated estimate �̂�𝑖 of 𝜏𝑖 is defined in (2.17). Plugging 𝑝𝑖 (𝑡) and �̂�𝑖 , 𝑖 = 1, 2
into (2.19) we obtain the kernel classification rule. The following result gives the sufficient
conditions for the Bayes risk consistency property established in Theorem 2 in the context of
the kernel classification rule.

Theorem 3. Let the class intensity functions be Lipschitz continuous on (0,∞). Assume that
the kernel function is also Lipschitz continuous on [−1, 1]. Suppose that the bandwidth ℎ

depends on 𝐿 in such a way that

ℎ(𝐿) → 0 and 𝐿ℎ3(𝐿) → ∞ .

Then, we have
R̂𝐿,𝑇 → R∗𝑇 (𝑃) ,

as 𝐿 →∞.
The proof of Theorem 3 is given in [49].

22 Chapter 2. Bayes Rules for Spike Train Data Classification

It must be noted that the conditions imposed on the class intensity functions and the kernel
function assure the uniform convergence of the kernel estimate required in Theorem 2. However,
the convergence only holds at the interior points [𝛿, 𝑇 − 𝛿] for some 𝛿 > 0. This is due to the
inherent boundary problem of the standard kernel estimate. In our case the boundary consists
of two points, i.e., 𝑡 = 0 and 𝑡 = 𝑇 . Further discussion on the effect of the boundary on the
kernel classifier performance and the impact of boundary-correcting methods is deferred to
Section 2.4.2.

The selection of the bandwidth ℎ is a critical issue in determining the accuracy of the
kernel classification rule. In practical applications one can specify the bandwidth using some
resampling techniques like cross-validation [50, 53]. In our experimental studies we choose
separate bandwidth for each class. This is done by finding the maximum of the log-likelihood
of the kernel estimate of the class shape densities. Hence, let 𝑝𝑖 (𝑡; ℎ) be the kernel estimate
in (2.25) specified by the bandwidth ℎ. Then, for the given validation set of size 𝑞 (per class)
we chose the bandwidth as follows

ℎ̂𝑖 = arg max
ℎ

𝑝∑︁
𝑙=1

𝑁 [𝑙]∑︁
𝑟=1

log
(
𝑝𝑖 (𝑡 [𝑙]𝑟 ; ℎ)

)
, 𝑖 = 1, 2 , (2.26)

where 𝑡 [𝑙]𝑟 is 𝑟-th observation of the 𝑙-th validation sample. Note that here 𝑝𝑖 (𝑡; ℎ) is the kernel
estimate determined from the training set of size 𝐿𝑖 − 𝑞.

2.4.1 Kernel classifier convergence to the Bayes classification rule

To show that the plug-in kernel classification rule risk converges to the Bayes risk (2.12)
as the observation window length 𝑇 and the training set size 𝐿 increase, we conducted to
a simulated data study. In all experiments the kernel classifier is given by (2.19) with the
estimated �̂�𝑖 , 𝑝𝑖 (𝑡; ℎ) specified by (2.17) and (2.25), respectively. The Gaussian kernel (2.23)
is used, whereas the bandwidth is selected according to the log-likelihood heuristic (2.26).
When selecting the bandwidth, we consider a grid of ten evenly logarithmically spaced points
ℎ ∈

[
10−1, 101] . Additionally, we employ a 5-fold cross validation in order to avoid biasing

the optimal bandwidth ℎ̂𝑖 with test data.
Similarly to Section 2.2.1, we use Monte Carlo simulations to illustrate the convergence

R̂𝐿,𝑇 → R∗
𝑇

as 𝐿 → ∞ and also the limit behavior of R̂𝐿,𝑇 as a function of 𝑇 for a fixed value
of 𝐿. To do so we need to slightly modify the previously established experimental protocols to
account for the fact that now there is separate training data used to estimate �̂�𝑖 , 𝑝𝑖 (𝑡; ℎ), and test
data to evaluate the classification rule (2.19) on.

Simulation 3. Denote D𝐿 = {(X1, 𝑌1), . . . , (X𝐿 , 𝑌𝐿)} as a sample of 𝐿 independent
observations of the spiking processes assigned to the training data. Additionally, let

2.4. Kernel classifier 23

D𝑃 = {(X1, 𝑌1), . . . , (X𝑃, 𝑌𝑃)} be a sample of 𝑃 independent observations of the spiking
processes assigned to the test data. Without the loss of generality, we assume 𝜋1 = 𝜋2 = 0.5,
which implies that the factors 𝐿

2 and 𝑃
2 represent the number of examples sampled per class for

the training and test data, respectively. Then, the simulation procedure can be summarized as
follows:

1) Specify the number of simulation repetitions 𝜉; intensity function pair 𝜆1(𝑡), 𝜆2(𝑡);
sequence observation interval [0, 𝑇]; and the total number of sampled spike trains for the
training (𝐿) and test (𝑃) data.

2) Construct a simulation grid {𝐿1, 𝐿2, . . . , 𝐿𝐾 } ∈ (0, 𝐿] specifying 𝑘 ∈ {1, . . . , 𝐾} points
at which to evaluate the classification rule.

3) For every repetition of the experiment:
a) Simulate 𝐿

2 and 𝑃
2 spike trains according to the intensity function 𝜆1(𝑡), and addi-

tionally 𝐿
2 and 𝑃

2 examples according to 𝜆2(𝑡).

b) At each point 𝐿𝑘 of the grid:
i. Select a subset of spike trains that is valid for the current simulation evaluation

point, i.e., D𝐿𝑘 = {(X1, 𝑌1), . . . , (X𝐿𝑘 , 𝑌𝐿𝑘)} ⊂ D𝐿 .

ii. Estimate �̂�𝑖 (2.17) and 𝑝𝑖 (𝑡; ℎ) (2.25) on D𝐿𝑘 .

iii. Compute the classifier prediction according to the rule (2.19) for every pair
(X 𝑗 , 𝑌 𝑗) ∈ D𝑃.

iv. Compute empirical risk (2.12) based on classifier decisions for the 𝑃 spike
trains.

4) Compute the mean and standard deviation of the empirical risk over 𝜉 repetitions.
Then the mean empirical risk over 𝜉 repetitions E

[
R𝐿,𝑇

]
is the Monte Carlo estimate of R̂𝐿,𝑇

for fixed 𝑇 . Similarly to Simulation 1, for every repetition of the experiment, this simulation
protocol reuses some sequences whenever the effective sample size 𝐿𝑘 increases. Conversely,
the test data D𝑃 remains fixed regardless of the training data size.

Let us first focus on the simulation results obtained for the intensity function specified
by (2.15). Figure 2.6a shows the convergence of the empirical kernel rule risk to the Bayes
risk (established in Section 2.2.1) for different values of the intensity function pair parameters
𝜙1, 𝜙2 versus 𝐿 and for a fixed 𝑇 = 10. We set 𝑃 = 104 based on the result established
in the aforementioned Section. Clearly, as the difficulty of the problem increases (i.e., the
point processes sampled according to the two intensity functions become more similar to one
another), the rate of convergence decreases.

Next, we wish to investigate the behavior of R̂𝐿,𝑇 as a function of 𝑇 for a fixed value of 𝐿.
Doing so requires modifying Simulation 2 to use the kernel classifier fitted on training data.

24 Chapter 2. Bayes Rules for Spike Train Data Classification

5 10 20 30 40 50 60 70 80 90 100
Number of training examples per class L2

0.1

0.2

0.3

0.4
Ri

sk

a)
ϕ2 / ϕ1 = 16
ϕ2 / ϕ1 = 16 (R*)
ϕ2 / ϕ1 = 8
ϕ2 / ϕ1 = 8 (R*)
ϕ2 / ϕ1 = 4
ϕ2 / ϕ1 = 4 (R*)
ϕ2 / ϕ1 = 2
ϕ2 / ϕ1 = 2 (R*)

0.1 0.2 0.5 1 2 5 10 20 50 100 200 500 1000
Simulation time

0.0

0.1

0.2

0.3

0.4

0.5

Ri
sk

b)

L= 10
L= 20
L= 100
L= 200
R*

Figure 2.6: The results of Monte Carlo simulations for the two-class classification problem for the
intensity function (2.15) parameterized by 𝜙. a) The average risk E

[
R𝐿,𝑇

]
versus 𝐿 for 𝑇 = 10 for

different values of intensity function pairs parameterized by 𝜙1, 𝜙2. The horizontal dashed lines denote
Bayes risk R∗

𝑇
for the associated intensity function pair. b) The average risk E

[
R𝐿,𝑇

]
versus 𝑇 across

different values of 𝐿 for 𝜙2/𝜙1 = 4. Dashed vertical line at 𝑇 = 10 denotes the simulation space slice
presented in the top row. The curve for Bayes risk is added for reference.

Simulation 4. The simulation procedure can be summarized as follows:
1) Specify the number of simulation repetitions 𝜉; intensity function pair 𝜆1(𝑡), 𝜆2(𝑡);

sequence observation interval [0, 𝑇]; and the total number of sampled spike trains for the
training (𝐿) and test (𝑃) data.

2) Construct a simulation grid {𝑇1, 𝑇2, . . . , 𝑇𝐾 } ∈ [0, 𝑇] specifying 𝑘 ∈ {1, . . . , 𝐾} points
at which to evaluate the classification rule.

3) For every repetition of the experiment:
a) Simulate 𝐿

2 and 𝑃
2 spike trains according to the intensity function 𝜆1(𝑡), and addi-

tionally 𝐿
2 and 𝑃

2 examples according to 𝜆2(𝑡).
b) At each point 𝑇𝑘 of the grid:

i. Select a subset of events that is valid for the current simulation evaluation
point, i.e., find X 𝑗 ,𝑇𝑘 =

[
𝑡
[𝑗 ,𝑇𝑘]
1 , . . . , 𝑡

[𝑗 ,𝑇𝑘]
𝑁 [𝑗,𝑇𝑘]

; 𝑁 [𝑗 ,𝑇𝑘]
]

such that 𝑡 [𝑗 ,𝑇𝑘]
𝑁 [𝑗,𝑇𝑘]

≤ 𝑇𝑘 ,
for all X 𝑗 ∈ D𝐿 ∪ D𝑃.

ii. Estimate �̂�𝑖 (2.17) and 𝑝𝑖 (𝑡; ℎ) (2.25) on (X 𝑗 ,𝑇𝑘 , 𝑌 𝑗 ,𝑇𝑘) ∈ D𝐿 .

iii. Compute the classifier prediction according to the rule (2.19) for every pair
(X 𝑗 ,𝑇𝑘 , 𝑌 𝑗 ,𝑇𝑘) ∈ D𝑃.

iv. Compute empirical risk (2.12) based on the classifier decisions for the 𝑃 spike
trains.

2.4. Kernel classifier 25

4) Compute the mean and standard deviation of the empirical risk over 𝜉 repetitions.
Then the mean empirical risk over 𝜉 repetitions E

[
R𝑇,𝑃

]
is the Monte Carlo estimate of R̂𝐿,𝑇 .

In contrast to the analysis presented in Section 2.2.1, when evaluating Simulation 4 we
choose to vary 𝐿 while keeping the intensity function pair parameters constant. This is to
highlight that the rate of convergence of R̂𝐿,𝑇 to the Bayes risk depends on both 𝐿 and 𝑇 . We
choose the parameters such that the classification problem is difficult enough to observe the
behavior of R̂𝐿,𝑇 across both 𝐿 and 𝑇 , but not so difficult that it does not reach zero risk for
some 𝑇 .

Figure 2.6b depicts E
[
R𝐿,𝑇

]
for the intensity function pair (2.15) for 𝜙2/𝜙1 = 4 versus 𝑇

with the size of training data ranging from 𝐿 = 10 to 𝐿 = 200. The Bayes risk R∗
𝑇

is also
plotted for comparison. The observed convergence E

[
R𝐿,𝑇

]
→ 0 is analogous to the findings

for the Bayes risk (Figure 2.3b). Also, the small value of the difference E
[
R𝐿,𝑇

]
−R∗

𝑇
for all 𝑇

should be noted. Additionally, we observe a small variability of the empirical risk with respect
to the training data size 𝐿.

Next, we analyze the value of the optimal bandwidth selected according to the log-likelihood
method versus 𝑇 . For brevity, in Figure 2.7a we show only the results for ℎ̂1, noting that the
curves obtained for ℎ̂2 are analogous. We observe an increase in ℎ̂𝑖 with 𝑇 , which aligns
with the notion that as the observation window increases, the distribution of events in time
becomes sparser, necessitating wider kernels. On the other hand, the obtained results also show
that ℎ(𝐿) → 0 as 𝐿 increases. Another way to view this property is to analyze the model
log-likelihood versus ℎ for fixed 𝑇 (Figure 2.7b).

To show that these findings hold for different classes of intensity functions, we run Simula-
tions 3-4 on intensity functions introduced in Table 2.1. We choose to repeat their description in
Table 2.2, given that the analysis is conducted only on a single parameterized intensity function
pair. The results for these functions are summarized in Figure 2.8. In all cases the average em-
pirical riskE

[
R𝐿,𝑇

]
→ 0 as𝑇 increases. Additionally, it can be observed thatE

[
R𝐿,𝑇

]
→ R∗

𝑇

as 𝐿 increases. Note that in Figure 2.8e the increase in risk for 𝑇 ∈ [102, 103] is an artifact
of the simulation that arises due to a finite resolution of shape density estimation (2.25) for an
intensity function with numerous discontinuities (Table 2.2e).

Finally, let us show a counter-example when the proposed algorithm fails to converge.
Again, consider the intensity function 2.16 which does not satisfy the assumptions A1 and
A2. Figure 2.9 depicts 𝜆1(𝑡; 𝑐, 𝑑) = 𝜆 (𝑡; 300, 20) and 𝜆2(𝑡; 𝑐, 𝑑) = 𝜆 (𝑡; 600, 40). Note that
the empirical risk does not converge to the Bayes risk despite the latter being close to zero
for some 𝑇 . In fact, the average empirical risk E

[
R𝐿,𝑇

]
is the smallest around the maximum

of (2.16) at 𝑡 = 0.5. Afterwards E
[
R𝐿,𝑇

]
slightly increases and reaches a plateau because no

new events can be observed.

26 Chapter 2. Bayes Rules for Spike Train Data Classification

0.1 0.2 0.5 1 2 5 10 20 50 100 200 500 1000
Simulation time

0.10
0.17
0.28
0.46
0.77
1.29
2.15
3.59
5.99

10.00
Op

tim
al

 b
an

dw
id

th

a)

0.10 0.17 0.28 0.46 0.77 1.29 2.15 3.59 5.99 10.00
Bandwidth

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
m

od
el

lo
g-

lik
el

ih
oo

d

b)

L= 10
L= 20

L= 100
L= 200

Figure 2.7: The results of Monte Carlo simulations for the two-class classification problem for the
intensity function pair (2.15) specified by 𝜙2/𝜙1 = 4. a) The average optimal bandwidth E

[
ℎ̂1

]
versus𝑇

for different values of 𝐿, estimated using 5-fold cross validation. The vertical dashed line at 𝑇 = 10
denotes the simulation space slice presented in the bottom row. b) The average normalized model
log-likelihood on test data versus ℎ for different values of 𝐿. The vertical dashed lines denote function
maxima. Note that the curves for 𝐿 = 100 and 𝐿 = 200 overlap.

Table 2.2: Additional set of intensity functions used in the simulated data study for the kernel classific-
ation rules risk convergence to the Bayes risk.

a) 𝜆(𝑡; 𝑟) = 𝑟 𝑟2/𝑟1 = 2

b) 𝜆(𝑡; 𝑟) = (𝑟 + 1) + 𝑟 cos
(

2𝜋
30 𝑡 + 2.6

)
+ cos

(
2𝜋
28 𝑡 + 4.5

)
𝑟2/𝑟1 = 2

c) 𝜆(𝑡; 𝜙) =
[
3.1 + 3 cos

(
𝜋

3
√

2
𝑡 + 𝜙

)]1/2
𝜙2/𝜙1 = 4

d) 𝜆(𝑡; 𝜙) = 1.3 exp
[
cos

(
𝜋

3
√

2
𝑡 + 𝜙

)]
𝜙2/𝜙1 = 4

e) 𝜆(𝑡; 𝜙) = 0.1 + 0.5 mod [𝑡 + 𝜙, 2𝜋] 𝜙2/𝜙1 = 4

2.4. Kernel classifier 27

0.1 1 10 100 1000
0.0

0.1

0.2

0.3

0.4

0.5

Ri
sk

a)

L= 10
L= 20
L= 100
L= 200
R*

L= 10
L= 20
L= 100
L= 200
R*

0.1 1 10 100 1000
0.0

0.1

0.2

0.3

0.4

0.5

Ri
sk

b)

L= 10
L= 20
L= 100
L= 200
R*

L= 10
L= 20
L= 100
L= 200
R*

0.1 1 10 100 1000
0.0

0.1

0.2

0.3

0.4

0.5

Ri
sk

c)

L= 10
L= 20
L= 100
L= 200
R*

L= 10
L= 20
L= 100
L= 200
R*

0.1 1 10 100 1000
0.0

0.1

0.2

0.3

0.4

0.5

Ri
sk

d)

L= 10
L= 20
L= 100
L= 200
R*

L= 10
L= 20
L= 100
L= 200
R*

0.1 1 10 100 1000

Simulation time

0.0

0.1

0.2

0.3

0.4

0.5

Ri
sk

e)

L= 10
L= 20
L= 100
L= 200
R*

L= 10
L= 20
L= 100
L= 200
R*

Figure 2.8: The average risk E
[
R𝐿,𝑇

]
versus 𝑇 for for different values of 𝐿. Each row corresponds to a

different two-class classification problem parameterized by an intensity functions presented in Table 2.2.

28 Chapter 2. Bayes Rules for Spike Train Data Classification

0.1 0.2 0.5 1 2 5 10 20 50 100 200 500 1000
Simulation time

0.0

0.1

0.2

0.3

Ri
sk

L= 10
L= 20

L= 100
L= 200

R*

Figure 2.9: The average risk E
[
R𝐿,𝑇

]
versus 𝑇 for different values of 𝐿 for an exponential intensity

function (2.16). Note that for a given set of parameters 𝑐, 𝑑 the Bayes risk is zero for 𝑇 > 1, whereas
E

[
R𝐿,𝑇

]
is not.

0 1 2 3 4 5
t

0.05

0.10

0.15

0.20

0.25

0.30

0.35

De
ns

ity

True density
KDE estimate
Lower boundary region
Upper boundary region

Figure 2.10: Kernel density estimation results with bandwidth ℎ = 1 for a random variable with bounded
support.

2.4.2 Impact of boundary correction on algorithm performance

For a compactly supported probability density function 𝑔(𝑡) kernel density estimation (KDE)
– which forms the basis of shape density estimation (2.25) part of the algorithm – is known
to produce estimates �̂�(𝑡) that are significantly more biased near the boundaries than in the
interior [55, 56]. Therefore, this same effect must occur when estimating the point process
intensity function using the proposed kernel method. The lower boundary is, of course, equal to
zero as time must be nonnegative, whereas the upper boundary 𝑇 results from the sequence cut-
off time after which we assume no events occur. These concepts are illustrated on Figure 2.10.
Importantly, the purpose of this study is to evaluate the impact of boundary correction methods
on the properties of our plug-in classification rules, and not propose a new method of boundary
correction.

2.4. Kernel classifier 29

2.4.2.1 Applying BC-KDE to point process intensity estimation

Let us first define the analyzed boundary correction methods in the general kernel density
estimation context, noting that adapting them to point process shape density estimation (2.25)
is straightforward. The kernel density estimator of the density function 𝑔(𝑡) defined on [0, 𝑇]
is given by the following formula

�̂�(𝑡) = 1
𝐿

𝐿∑︁
𝑗=1
𝐾ℎ

(
𝑡 − 𝑡 𝑗

)
, (2.27)

where 𝐾ℎ (𝑢) = ℎ−1𝐾 (𝑢/ℎ) is the scaled kernel function with the smoothing parameter ℎ
(bandwidth). Denote

𝑎𝑘 (𝑐) =
∫ 𝑐

−∞
𝑢𝑘𝐾 (𝑢)𝑑𝑢

𝑏(𝑐) =
∫ 𝑐

−∞
[𝐾 (𝑢)]2 𝑑𝑢

, (2.28)

and assume that 𝐾 (𝑢) is a twice-differentiable symmetric and unimodal function such that the
following conditions are fulfilled:

𝑎0(∞) = 1

𝑎1(∞) = 0

𝑎2(∞) > 0

. (2.29)

An example of such kernel function are the Epanechnikov (2.22) and Gaussian (2.23) kernels.
For 𝑔(𝑡) bounded from below at 𝑡LB = 0, let 𝑝LB(𝑡) = 𝑡/ℎ be the relative position indicator

of 𝑡 with respect to the lower boundary 𝑡LB = 0. Denote 𝑝 = 𝑝LB(𝑡) and ℎ = ℎ(𝐿). If ℎ → 0
and 𝐿ℎ→∞ as 𝐿 →∞, then the KDE bias and variance are given as [57]

E [�̂�(𝑡)] ≈ 𝑎0(𝑝)𝑔(𝑡) − ℎ𝑎1(𝑝)𝑔′(𝑡) +
1
2
ℎ2𝑎2(𝑝)𝑔′′(𝑡)

Var [�̂�(𝑡)] ≈ (𝐿ℎ)−1 𝑏(𝑝)𝑔(𝑡)
. (2.30)

These expressions describe the bias and variance both in the boundary and interior regions. Note
that for a compactly supported kernel function (such as the Epanechnikov kernel), the middle
term of the expectation ℎ𝑎1(𝑝)𝑔′(𝑡) equals zero in the interior region. For a density function 𝑔(𝑡)
with an upper boundary 𝑡UB = 𝑇 the relative position indicator becomes 𝑝UB(𝑡) = (𝑇 − 𝑡) /ℎ.
If 𝑔(𝑡) has only the upper boundary, 𝑝UB(𝑡) can be plugged into (2.30) in place of 𝑝. This
implies that the set of equations (2.30) is also valid in case 𝑔(𝑡) is bounded from above and
below, but these boundaries do not overlap (i.e., there exists an interior). When the interior
region is empty, these expressions for bias and variance need to be modified [58].

For our analysis, it is sufficient to set 𝑡LB = 0 and 𝑡UB = 𝑇 . Then, we consider the following
boundary correction methods:

30 Chapter 2. Bayes Rules for Spike Train Data Classification

0

1

lb ub
0

1

lb ub lb ub lb ub lb ub lb ub
t

De
ns
ity

Figure 2.11: Examples of jackknived Epanechnikov kernels with bandwidth ℎ = 4 constructed near the
upper (top row) and lower (bottom row) boundary for data supported on 𝑡 ∈ [0, 30].

1) density renormalization (also known as “cut-and-normalize” method) [55]

�̂�NRM(𝑡) =
�̂�(𝑡)

𝑎0(𝑝LB) · 𝑎0(𝑝UB)
. (2.31)

2) reflection [59, 60]

�̂�REF(𝑡) =
1
𝐿

𝐿∑︁
𝑗=1

[
𝐾ℎ

(
𝑡 + 𝑡 𝑗

)
+ 𝐾ℎ

(
𝑡 − 𝑡 𝑗

)
+ 𝐾ℎ

(
𝑡 −

[
2𝑇 − 𝑡 𝑗

])]
. (2.32)

3) generalized jackknifing with a linear kernel combination [57, 58]

𝑠(𝑢; 𝑝) = 𝑎2(𝑝) − 𝑎1(𝑝)𝑢
𝑎0(𝑝)𝑎2(𝑝) − [𝑎1(𝑝)]2

, 𝑎0(𝑝)𝑎2(𝑝) ≠ [𝑎1(𝑝)]2

𝑠LB
(
𝑡; 𝑡 𝑗 , ℎ

)
= 𝑠

(
𝑡 − 𝑡 𝑗
ℎ

;
𝑡

ℎ

)
𝑠UB

(
𝑡; 𝑡 𝑗 , ℎ, 𝑇

)
= 𝑠

(
−
𝑡 − 𝑡 𝑗
ℎ

;
𝑇 − 𝑡
ℎ

)
𝐾JCK

(
𝑡; 𝑡 𝑗 , ℎ, 𝑇

)
= 𝑠LB

(
𝑡; 𝑡 𝑗 , ℎ

)
· 𝑠UB

(
𝑡; 𝑡 𝑗 , ℎ, 𝑇

)
· 𝐾ℎ

(
𝑡 − 𝑡 𝑗

)
�̂�JCK(𝑡) =

1
𝐿

𝐿∑︁
𝑗=1
𝐾JCK

(
𝑡; 𝑡 𝑗 , ℎ, 𝑇

)
. (2.33)

The shape of the jackknived kernel 𝐾JCK depends on its position relative to boundaries.
An example of a family of jackknived Epanechnikov kernels is presented in Figure 2.11.

Among the enumerated methods, the generalized jackknifing correction provides the best the-
oretical improvement of the bias in the boundary region [57]. The other two methods should
in principle provide a similar, albeit smaller, improvement. From a computational complexity
perspective, the best method seems to be the density renormalization because it is applied
only after the density has been estimated using (2.27). On the other hand, both reflection and
generalized jackknifing modify the density estimation function at every KDE evaluation point,

2.4. Kernel classifier 31

making these methods scale adversely with the number of events in the sequence and the time
axis resolution. Additionally, should the upper boundary increase for any reason, both reflection
and generalized jackknifing need to be recomputed in the old boundary region. Nevertheless, we
still consider these algorithms in our analysis (despite the drawbacks in terms of computational
complexity) as using them might bring some benefits over the density renormalization method.

To assess the behavior of these boundary correction methods for the point process intensity
function estimation, a preliminary experiment was conducted. In each case the point process
intensity shape function was estimated from 1000 replicates. Figure 2.12 present some results of
the study on simulated data sampled according to the intensity function (2.15) for progressively
larger interior. In general, all boundary correction methods reduce the estimation bias in the
boundary regions, with the generalized jackknifing method being noticeably more accurate
than the other approaches. What is more interesting, however, is that when using automatic
bandwidth selection according to the log-likelihood maximization rule (2.26), generalized
jackknifing completely fails to find the correct value of the bandwidth when the interior region
can potentially be empty (i.e., both boundary regions overlap). This occurs when choosing the
largest candidate value for ℎ on the optimization grid causes the boundary regions to encompass
the entire signal. This finding was consistent across different simulated data scenarios.

Additionally, we found that the density renormalization method was robust to different
analysis parameters and chosen intensity functions. We therefore experimented with using this
algorithm in the bandwidth selection step of the algorithm (2.26), but applying the other methods
during the final shape function estimation step. The result of this procedure is presented in the
bottom row of Figure 2.12. We found that the values of bandwidth determined by this procedure
lead to more accurate estimates of the intensity function, which could have a positive impact on
the classifier performance. Henceforth we shall call this procedure stable bandwidth selection,
or stable version of the algorithm.

2.4.2.2 Applying BC-KDE to spike train data classification

In order to assess the impact of boundary correction on classification using our proposed
approach, we conducted experiments on spike trains generated according to intensity functions
introduced in Section 2.2.1. We focused our efforts on analyzing the rate of convergence to
the Bayes risk in terms of the number of training examples 𝐿 for a fixed sequence length 𝑇 .
We showed in Section 2.4.1 that this classifier converges to the Bayes risk for a sufficiently
large 𝐿. In this study 𝑇 is set to be small so that the relative impact of boundary effects on
the classification performance is large. This constraint means that incorrectly choosing the
bandwidth ℎ may cause the interior to be empty.

32 Chapter 2. Bayes Rules for Spike Train Data Classification

0.5
1.0

1.50

2.00

2.50

3.00

fixed bandwidth

0
5

1.00

2.00

3.00

0
10

1.00

1.50

2.00

2.50

0
20

0.00

1.00

2.00

3.00

0.5
1.0

1.00

2.00

3.00

4.00

5.00

optimized bandwidth

0
5

1.00

2.00

3.00

0
10

1.00
1.50
2.00
2.50
3.00

0
20

0.00

1.00

2.00

3.00

0.5
1.0

1.50

2.00

2.50

optimized bandwidth
(stable selection)

0
5

1.00

2.00

3.00

0
10

1.00

1.50

2.00

2.50

0
20

0.00

1.00

2.00

3.00

Tim
e

Intensity

Ground truth
KDE
BC-KDE norm

alization
BC-KDE jackknifing
BC-KDE reflection

Figure
2.12:

The
effectof

differentboundary
correction

m
ethods

on
pointprocess

intensity
function

estim
ation

for
data

sim
ulated

according
to

(2.15)
for

progressively
larger

interior.
G

aussian
kernelw

as
used

as
the

base
kernel.

Top
row

:
bandw

idth
param

eter
is

setthe
sam

e
for

allm
ethods.

M
iddle

row
:

autom
atically-selected

bandw
idth

according
to

(2.26).
B

ottom
row

:
sam

e
as

m
iddle

row,butin
allcases

B
C

-K
D

E
density

renorm
alization

w
as

used
during

bandw
idth

optim
ization.

2.4. Kernel classifier 33

5 20 40 60 80 1000.284

0.335

0.385
Ri

sk

a)

0.10 0.46 2.15 10.000.0

0.5

1.0

No
rm

al
ize

d
m

od
el

lo
g-

lik
el

ih
oo

d

KDE KDE (stabilized)KDE KDE (stabilized)

5 20 40 60 80 1000.284

0.335

0.385

Ri
sk

b)

0.10 0.46 2.15 10.000.0

0.5

1.0
No

rm
al

ize
d

m
od

el
lo

g-
lik

el
ih

oo
d

BC-KDE jackknifing BC-KDE jackknifing (stabilized)BC-KDE jackknifing BC-KDE jackknifing (stabilized)

5 20 40 60 80 1000.284

0.335

0.385

Ri
sk

c)

0.10 0.46 2.15 10.000.0

0.5

1.0

No
rm

al
ize

d
m

od
el

lo
g-

lik
el

ih
oo

d

BC-KDE normalization BC-KDE normalization (stabilized)BC-KDE normalization BC-KDE normalization (stabilized)

5 20 40 60 80 100

Number of training examples
per class L2

0.284

0.335

0.385

Ri
sk

d)

0.10 0.46 2.15 10.00

Bandwidth

0.0

0.5

1.0

No
rm

al
ize

d
m

od
el

lo
g-

lik
el

ih
oo

d

BC-KDE reflection BC-KDE reflection (stabilized)BC-KDE reflection BC-KDE reflection (stabilized)

Figure 2.13: Results of the classifier convergence study with respect to the number of training examples 𝐿
for data simulated according to (2.15), depending on the applied boundary correction method. Left
column: the average risk E

[
R𝐿,𝑇

]
versus 𝐿 compared to the Bayes risk baseline for fixed 𝑇 = 10. Right

column: the bandwidth selection curves for class 𝜔1 with 𝑇 = 10 and 𝐿 = 200. The vertical dashed
lines denote function maxima. Note that the density normalization method and all stable version of the
algorithm selected the same bandwidth.

34 Chapter 2. Bayes Rules for Spike Train Data Classification

An example of the results obtained for spike train simulated according to (2.15) is shown
in Figure 2.13. In this case it can be observed that all methods other than jackknifing improve
the convergence rate with respect to 𝐿 compared to the KDE baseline. As shown in the
previous Section, the most likely reason for jackknifing method failing to converge is that the
automatic bandwidth selection settles, incorrectly, on the value of ℎ that is the largest for a given
optimization grid, significantly overestimating ℎ̂. Note that for 𝐿 = 200 each model selected a
different bandwidth.

In order to reason about the overall impact of the boundary correction methods, we need to
aggregate the results obtained for all intensity function pairs and algorithms. Let

R[𝑄]𝑔 =

���R̂[𝑄]𝐿,𝑇
− R∗𝑇

��� (2.34)

be the estimated risk gap R𝑔 between the classification risk R̂𝐿,𝑇 for a model 𝑄 fitted on 𝐿
training examples with the upper boundary set to 𝑇 , and the Bayes risk R∗

𝑇
. We define the

relative improvement RI[𝑄,𝐵] of the model 𝑄 compared to the baseline model 𝐵 as

RI[𝑄,𝐵] = 1 −
R[𝑄]𝑔

R[𝐵]𝑔

. (2.35)

We compute this factor for all proposed boundary correction methods by taking the uncor-
rected KDE as the baseline 𝐵. Additionally, we also compute this factor for the KDE-stable
variant where boundary correction by density normalization was used only to select the band-
width (keeping the rest of the algorithm unchanged). Figure 2.14 summarizes the obtained
results by algorithm name aggregated over all intensity function pairs used in the simulated
data study (Table 2.2). In general the reflection and density normalization methods slightly
improve classification performance. By contrast, jackknifing-based correction makes the risk
gap significantly larger. Based on the raw results, such as those presented in Figure 2.13 and
the earlier qualitative analysis, we reason that this method is incompatible with the chosen
optimal bandwidth selection heuristic (2.26), causing the model to fail to fit the shape density
function. We note that stabilizing the bandwidth selection algorithm significantly changes
the results for jackknifing and reflection methods. The former no longer has a net negative
impact on the classifier, while the latter achieves a median RI (or mRI) of 0.26. Additionally,
the KDE-stable model performs worse than the baseline, which suggests that choosing a more
accurate bandwidth does not always lead to a better kernel classifier.

2.5 Applications – Twitter bot detection

So far we have laid theoretical groundwork for the kernel-method-based approach for the
two-class classification problem. The proposed methodology was empirically evaluated on

2.5. Applications – Twitter bot detection 35

−3
−2
−1

0
1

KDE (stabilized)
BC-KDE jackknifing
BC-KDE jackknifing (stabilized)
BC-KDE normalization
BC-KDE normalization (stabilized)
BC-KDE reflection
BC-KDE reflection (stabilized)

−100

−50

Re
la

tiv
e

im
pr

ov
em

en
t

co
m

pa
re

d
to

 b
as

el
in

e
KDE (stabilized)
BC-KDE jackknifing
BC-KDE jackknifing (stabilized)
BC-KDE normalization
BC-KDE normalization (stabilized)
BC-KDE reflection
BC-KDE reflection (stabilized)

mRI = −0.13
mRI = −11.23
mRI = 0.01
mRI = 0.05
mRI = 0.05
mRI = 0.02
mRI = 0.26

Figure 2.14: Box plots of the observed relative improvement of choosing a BC-KDE algorithm over
the baseline KDE model. The results are grouped by algorithm type and aggregated over all intensity
function pairs used in the simulated data study (Table 2.2). The label mRI denotes the median value of
the RI factor (2.35). Note that RI is unbounded from below and can have a large magnitude when model
performance is significantly worse than the baseline.

simulated data and analyzed in terms of the impact of the training set size, observation window
length, kernel bandwidth selection, and applied boundary correction method. In this Section
we extend our analysis to real-life data. Naturally, care must be taken to select a dataset that
satisfies the assumptions and constraints imposed by our approach. To construct the kernel
estimate of shape density function we require that events observed within each spike train
sequence are independent of one another. Additionally, the number of events in each sequence
must increase with the observation window𝑇 . Lastly, we require that time is the primary carrier
of information of the signal.

Thus, we choose to evaluate our approach by fitting our classifier on a real-life dataset of
legitimate and automated Twitter user activity [5]. We choose this data for several reasons.
First of all, each record is described only in terms of the time of event without any auxiliary
information (such as tweet content and sentiment). Secondly, spike trains formed for each
record have a long sequence duration, allowing us to analyze the performance of the classifier
versus 𝑇 . Lastly, the events occur at timescales differing by many orders of magnitude. This
allows us to assess the feasibility of the proposed approach in scenarios commonly encountered
when processing this type of data.

2.5.1 An overview of Twitter bot detection

Social bots are automated agents that interact with humans and mimic human behavior [61].
In social media environment such bots may aggregate information from various sources, auto-
matically respond to custom queries, or even generate content that satisfies some constraints.
However, some bot behavior and intent is purposefully misleading or downright malicious.
One example that is difficult to detect is political discourse polarization by spreading mis-
information and promoting confirmation bias in like-minded people (i.e., creating an echo

36 Chapter 2. Bayes Rules for Spike Train Data Classification

chamber) [62, 63]. Taking into account the increasingly more sophisticated programming be-
hind the malicious social bots, the field of bot detection research lays the foundation to what can
be described as an arms race against novel automated agents [64]. One particular impediment
to this research is the lack of a standard benchmark that could be used to evaluate and compare
different approaches [65].

Bot detection systems can be divided into three categories: crowdsourcing, feature-based
classification, and social network analysis. Crowdsourcing techniques rely on the ability of hired
human experts and volunteers to manually annotate bots based on their profiles, or on sending
survey requests to the users and analyzing their replies [64]. Feature-based classification aims
to automate the process by analyzing user-level features, usually by aggregating data pertaining
to the user itself and to their activity [66, 67, 68]. Note that while this method can include
features based on the social network structure formed by the user, it still analyzes only one
user at a time [69]. Furthermore, user-focused methods are not limited to supervised learning
from labels. It is also possible to perform unsupervised clustering of users based on the
temporal similarity of their activity, regardless of their relationship in the social network [5].
This circumvents the time-consuming and costly process of labeling the data. Additionally,
the unsupervised systems do not become outdated when new generations of bots, exhibiting
patterns of behavior not present during model training, become more prevalent. However, they
treat all unclustered examples as legitimate users, limiting their ability to detect bots exhibiting
irregular behavior. The last of the three bot detection categories expands the scope of analysis
to operate on a large group of users at once [70, 71, 72]. Similarly to the unsupervised user-level
methods, they do not become obsolete due to data drift [71]. However, given that they analyze
the actual community structure formed by users, they take more time to process information,
making them more difficult to operate at scale [73].

In this work we focus on analyzing user data in terms of tweet and retweet actions as the only
information available to the model. A tweet is the original message that can be re-broadcasted
(i.e., retweeted) by other users. Analyzing retweet patterns can be utilized to predict which
tweets will go viral or to identify the tweet target demographic [74]. Note that such analysis
can also be used to determine the legitimacy of a retweet thread, or in other words: whether
it occurred organically, or whether the activity was artificially inflated [75]. While it is more
common to analyze retweets with group-based methods [76, 77, 78], automated behavior can
also be made evident by analyzing user-level patterns of retweet activity [79, 69, 5]. The latter
is the approach followed in our study.

2.5. Applications – Twitter bot detection 37

Table 2.3: Attributes used to describe every record of the RTBUST study Twitter dataset.

Field name Description
user-id Unique identifier associated with the retweeting user
user-screen_name Name associated with user-id
user-created_at Timestamp of the retweeting user creation
retweet-id Unique identifier associated with the retweet
retweet-created_at Timestamp of the retweet
originUser-id Unique identifier associated with the tweeting user
originUser-screen_name Name associated with originUser-id
originUser-created_at Timestamp of the tweeting user creation
originTweet-id Unique identifier associated with the tweet
originTweet-created_at Timestamp of the tweet

is_bot
True/False label of whether the user is a bot,
or NULL if the record is unlabeled

2.5.2 Dataset description

The RTBUST study reported in [5] used Twitter Premium Search API to compile a list of all
Italian retweets shared between 18 June 2018 and 1 July 2018. In this 2-week period there
have been almost 10M retweets shared by 1.4M distinct users. The compiled dataseta consists
of records of retweet timestamps associated with some original tweets. These records can
be aggregated based on user id such that each user is characterized by a different number of
tweet-retweet pairs. To supplement this vast collection of unlabeled records, authors of [5]
manually annotated about 1000 accounts based on published annotation guidelines for datasets
containing social bots [64].

The description of individual fields of every record of the raw dataset is provided in
Table 2.3. Note that these records contain no information on the content of shared tweets
(although they can be sourced based on the originTweet-id field). For this reason the goal is
to classify legitimate and bot users based solely on retweet timestamps. Notably, every tweet-
retweet pair is independent of any other pair. This is a reasonable assumption given the data;
however, it seems plausible that graph community structure and programmed bot behavior play
an important role in what gets retweeted, and when.

We limit the scope of our analysis to the labeled portion of this dataset and, in contrast to
the original study, apply a supervised learning algorithm on individual data points. Let retweet

aThe dataset is available at https://doi.org/10.5281/zenodo.2653137

https://doi.org/10.5281/zenodo.2653137

38 Chapter 2. Bayes Rules for Spike Train Data Classification

delay be the difference between retweet and the origin-tweet timestamps, expressed in minutes.b

This quantity can be treated as describing an observed event, hence we denote it as 𝑡 in order
to avoid introducing additional notation. We filter the records so that only those with both
tweet and retweet timestamps occurring from 18 June 2018 to 1 July 2018 (exclusive) are kept,
meaning that the retweet delay attribute is bounded from above to about 𝜏max = 2 · 104 minutes
(2 weeks). Additionally, only records with a delay of at least 𝜏min = 10−1 minutes were
considered for further analysis. Records with a retweet delay below the selected 𝜏min can be
considered a sign of either auto-retweeting bots, or legitimate users that were refreshing their
feed as the tweet was posted and decided to retweet immediately. Either way, in our opinion,
this does constitute a typical user behavior. As a result of this filtering step, 11.73% of all
records were removed.

Finally, the records were grouped by the retweeting user and by label. This al-
lowed us to construct a set of data points 𝑿 with elements 𝒙 = [𝑡1, . . . , 𝑡𝑈;𝑈] such that
𝜏min < 𝑡1 < . . . < 𝑡𝑈 < 𝜏max are the retweet delays bounded by observation time 𝜏max and
𝑈 = 𝑈 (𝜏max) is the length of the sequence. We obtain a nearly balanced data subset with
366 examples of legitimate users and 389 examples of bot users. These user tweet-retweet
sequences have, on average, about 113 events with a maximum of 698. The remaining
46,883 cases are unlabeled and were not used in this study.

2.5.3 Data exploration & establishing a baseline classifier

Figure 2.15a presents a kernel-smoothed distribution of retweet delays of labeled data points.
High degree of overlap between the two distributions implies that the classification problem
is difficult to solve. Additionally, we can expect both small and large delays to play a role in
differentiating the two classes. This is, however, a very simplified exploration of the problem,
given that the dataset creators have identified several recurring patterns of bot behavior (see
Figure 4 in [5]), which unfortunately they have not labeled in the dataset. From now on we will
analyze the dataset as-is, aggregating all data points according to the label.

We create a simple classification baseline by treating as bots all accounts that have the
number of retweets in this 2 week period higher than a fixed threshold established on the
unlabeled portion of the dataset. This directly corresponds to the baseline of [5] which was
based on user retweet rate (i.e., the number of retweets per unit of time). We evaluate this
baseline in terms of average accuracy for different values of the (min-max normalized) retweet
rate threshold. The obtained baseline is presented in Figure 2.15b. Choosing the third quantile
of the unlabeled dataset distribution as the threshold, we obtain an accuracy score of 0.3417,

bThroughout the rest of this work, we express all units of time in terms of minutes, same as the original RTBUST
study.

2.5. Applications – Twitter bot detection 39

10−1 100 101 102 103 104

Retweet delay [min]
0.0

0.2

0.4

De
ns

ity

a)

0.0 0.2 0.4 0.6 0.8 1.0
Normalized retweet rate

0

8

16

24

De
ns

ity

b)

legitimate bot

0.29

0.37

0.45

0.53

Ac
cu

ra
cy

Figure 2.15: a) Retweet delay distribution for labeled data points. Vertical dashed lines denote median
delay for each class. b) Normalized retweet rate distribution for the two classes and classifier performance
for a retweet-rate-threshold-based rule. Vertical dashed line denotes the third quantile of retweet rate
distribution of the unlabeled portion of the dataset. The obtained accuracy score for very low and very
high threshold values is an indicator of a slight class label imbalance in this dataset (366 examples of
legitimate users and 389 examples of bots).

which is similar to the value presented in the original study (0.3440). It is important to note
that this score represents a worse-than-random binary classification performance and would be
significantly higher if the threshold rule was flipped (i.e., classifying accounts with high retweet
rate as legitimate instead of bots). Nevertheless, we keep this baseline for consistency with [5].

2.5.4 Applying the proposed method

According to the results of the simulated data study in Section 2.4, the classifier performance
heavily depends on the size of the training set, as well as the observed sequence length.
Therefore, it is reasonable to assume that the same holds for real-life data, although we need to
take into consideration the cost of labeling data points, as well as the computational complexity
of estimating the intensity function for all classes. Given the small sample size, we opt to use
the stratified 5-fold cross-validation to evaluate the algorithm in lieu of a fixed training-test data
split.

We have limited the scope of our analysis to the following four quantities:
1) the length of the retweet delay time series (𝑇),

40 Chapter 2. Bayes Rules for Spike Train Data Classification

10
−1

10
0

10
1

10
2

10
3

10
4

0.55

0.60

0.65

0.70

Accuracy

a)

10
1

10
2

10
3

0.55

0.60

0.65

0.70

c)

linear
logarithm

ic
piecewise log.

10
−1

10
0

10
1

10
2

10
3

10
4

Sequence observation tim
e [m

in]

0.55

0.60

0.65

0.70

Accuracy

b)

10
1

10
2

10
3

Num
ber of points to evaluate KDE on

0.55

0.60

0.65

0.70

d)

KDE
BC-KDE (renorm

alization)
BC-KDE (reflection)
BC-KDE (jackknifing)

Figure2.16:Perform
anceoftheproposed

kernelclassifieron
thetw

o-classTw
itterbotdetection

problem
.a)A

ccuracy
versusretw

eetdelay
sequenceobservation

tim
e

depending
on

the
type

ofgrid
used

to
selectK

D
E

evaluation
points.b)A

ccuracy
versusretw

eetdelay
sequence

observation
tim

e
depending

on
the

type
of

the
K

D
E

algorithm
used

to
estim

ate
the

shape
density

function.c)A
ccuracy

versusthe
num

berofpointsofthe
K

D
E

grid
depending

on
the

type
ofgrid

used
to

selectthem
.d)A

ccuracy
versusthe

num
berofpointsofthe

K
D

E
grid

depending
on

the
type

ofthe
K

D
E

algorithm
used

to
estim

ate
the

shape
density

function.

2.5. Applications – Twitter bot detection 41

2) the number of points to evaluate the KDE on (𝑘),
3) the type of the grid used to select KDE evaluation points:

• linear,

• logarithmic,

• piecewise logarithmic (where the entire time-axis support is split into contiguous
subregions and a separate logarithmic grid is defined for every subregion)c,

4) the type of a KDE boundary correction method,
where the first two of the enumerated quantities directly impact the computational complexity of
the proposed algorithm. This is an important aspect to consider for this specific dataset because
a single data point (sequence) can be composed of events occurring at timescales differing
by almost five orders of magnitude (𝜏min = 10−1 ≤ 𝑡 ≤ 𝜏max = 2 · 104 [min]). All kernels are
Gaussian (2.23).

Let us first summarize the results obtained in terms of the retweet delay sequence length
while keeping the number of points to evaluate the KDE on fixed at 𝑘 = 5000. Figure 2.16a
shows how the choice of KDE evaluation point grid influences the classifier. The performance
of the model steadily increases as more events are observed, although the choice of the grid
seems to have an impact on the classifier only for extremely short sequences.

On the other hand, Figure 2.16b shows the results of the sequence length analysis in terms
of the KDE boundary correction algorithm, for fixed 𝑘 = 5000 and piecewise logarithmic grid.
The boundary correction does not seem to have any noticeable impact on classifier performance,
even at extremely short sequence lengths (which was noticeable in the simulated data study).
Note the reduced variance at small sequence slice lengths.

The other set of experiments was conducted by varying the number of points to evaluate
the KDE on while keeping 𝑇 = max𝑡∈𝑿 𝑡 constant. Figure 2.16c summarizes the results for the
type of grid analysis. Surprisingly, the linear grid seems to outperform the two logarithmic grid
types at smaller number of grid points, and this property seems to be inverted for larger grid
sizes. The performance for linear grid at small grid sizes could be explained by those points
being selected for low density regions of small and large retweet delays (as per the exploratory
analysis in Figure 2.15a) which is not the case for logarithmic grids. Finally, in Figure 2.16d
we observe that there seems to be no significant difference in performance between BC-KDE
algorithms when evaluated in terms of the KDE grid size.

We summarize our results in Table 2.4 and compare them to the baseline and different
methods evaluated in the original study. We report the best result for our kernel-method-based
algorithm among all analyzed parameter combinations, although, as evidenced in Figure 2.16,

cIn the simulated data study the piecewise logarithmic grid has shown a good compromise between model
performance and its computational complexity.

42 Chapter 2. Bayes Rules for Spike Train Data Classification

Table 2.4: Comparison of model performance on the bot detection task between different techniques.

Source Technique Accuracy F1-score
n/a retweet rate baseline 34.40 35.59

[5]
Botometer 58.30 42.86
HoloScope 49.08 0.96
Social fingerprinting 71.14 75.82

[5]

RTBUST (handcrafted features) 53.64 62.70
RTBUST (PCA) 51.54 66.49
RTBUST (TICA) 53.64 67.47
RTBUST (VAE) 87.55 86.87

our KDE 67.81 ± 3.31 60.33 ± 4.08

what actually matters is the length of the sequence and the number of points to evaluate the
model on (the more, the better). In terms of accuracy, our model has outperformed all tech-
niques other than the Social fingerprinting [80] and the state-of-the-art results of RTBUST-VAE.
Unfortunately, it lags behind most other solutions in terms of F1-score. Note that this measure
focuses solely on the positive class (here: bot accounts), whereas accuracy takes into account
both classes. For this reason F1-score can be considered a more practical measure of per-
formance on this classification problem, because it measures the relevance of the suspected
bot account prediction. One possible way to improve the model performance with respect
to F1-score is to bias the classification rule (2.9) to make it more likely to predict a positive
class label, unless the evidence suggests otherwise. Naturally, doing so is bound to decrease
the accuracy of the model. Finally, among the presented results, RTBUST-VAE emerges as the
uncontested winner. However, we note that it is an unsupervised learning algorithm and is
therefore able to infer different non-overlapping patterns of activity of distinct groups of users
not present in the class-label-aggregated, supervised data on which we evaluate our model.

2.6 Summary

In this Chapter we described a novel methodology based on the Bayes decision theory for the
two-class classification problem for a class of spike train data characterized by non-random
intensity functions. The optimal Bayes rule was derived and its finite and asymptotic (with
respect to the length of the observation interval) properties were established. Our theoretical
findings were evaluated in a Monte Carlo simulation study. We found that the Bayes risk Monte
Carlo estimate converges to zero as the length of the observation interval increases, with the

2.6. Summary 43

rate of convergence depending on the difficulty of the classification problem and, under some
conditions, on the asymptotic behavior of the class intensity functions. Notably, if the class
intensity functions are compactly supported, then the convergence of the Bayes risk to zero is
not guaranteed. This finding is supported by results of the simulation study for an intensity
function pair counter-example.

Furthermore, we introduced a general class of plug-in empirical classification rules and
formulated a set of sufficient conditions for their convergence (as the amount of data grows)
to the Bayes risk. This optimality property was confirmed and verified for the plug-in kernel
classifier derived from the aggregated data. The aggregated data was constructed by using
replicates of the spiking process (i.e., different realizations of the same spiking process) to form
the training and test sets for a two-class problem. Similarly to the analysis conducted for the
optimal classification rule, we evaluated our theoretical findings in a finite sample study. The
obtained results show that the empirical risk of the proposed kernel classifier converges to the
Bayes risk as the training set size increases.

In addition to the kernel rules risk convergence study, the impact of boundary correction
in the shape function estimation step of the proposed algorithm on the classifier performance
was also assessed. We evaluated three different boundary correction methods and found
that, in general, applying the reflection and density renormalization methods lead to a small
improvement of the risk convergence rate. Conversely, the generalized jackknifing method
tends to fail to automatically find the optimal value of the bandwidth when the interior region
can potentially be empty (i.e., when both boundary regions overlap), which in turn causes
the classifier predictions to be significantly less accurate than for the baseline model without
any boundary correction. Interestingly, stabilizing the automatic bandwidth selection using
the density renormalization method allowed us to observe a relative model improvement even
when using the generalized jackknifing during the shape function estimation. However, it must
be stressed that any noticeable impact (both positive and negative) of boundary correction on
model performance is present only when the event stream observation period is sufficiently
short. For longer sequences, where an interior region dominates, these effects are negligible.

Lastly, an exemplary model use-case scenario on real-life data was also presented. Our
algorithm was applied to a labeled Twitter user activity dataset in order to determine whether
each analyzed user is legitimate (i.e., human-controlled) or not. An interesting property of this
specific data is that event times in each sequence can differ by almost five orders of magnitude.
While the proposed approach does not outperform the incumbent state-of-the-art, it performs
comparably to other approaches listed in that study. This performance gap shows that there is
some benefit to using unsupervised approaches for bot detection, allowing the model to infer
different non-overlapping patterns of activity of distinct groups of users, which are not identified

44 Chapter 2. Bayes Rules for Spike Train Data Classification

in the class-label-aggregated data. Our model uses significantly fewer examples for training
compared to the RTBUST methods (about 600 labeled examples vs. more than 63 thousand
unlabeled cases). Notably, the dataset was manually labeled, which means that any mislabeled
cases could have had a significantly larger impact on the supervised approach.

In all of our experiments – on real and simulated data alike – we explored various parameters
that can be used to fine-tune the performance of the algorithm. We found that three quantities
have a significant impact on the model: the length of the sequence under study, the training set
size, and the bandwidth selection algorithm. The former two quantities directly correspond to
the sample size in a classical kernel density estimation context (of course, increasing sequence
length is only impactful if events are occurring in the new interval). We posit that applying
boundary correction methods to the algorithm has no significant impact on the outcome due to
the time series timescale, and due the bandwidth parameter being fixed for the entire sequence.
For early-events the performance of the model is low because only a few events have actually
been observed, regardless of any boundary correction. On the other hand, for late-events
the bandwidth seems to be too small to have any significant impact on density estimation at
extremely large timescales. It might be interesting to explore this concept and consider adaptive
kernel bandwidth in future work.

As a final note, the two-class classification problem studied in this Chapter has a straightfor-
ward generalization to the multi-class situation with the class labels denoted as {𝜔1, . . . , 𝜔𝑐}.
In fact, the Bayes rule in (2.9) for the 𝑐−class classification problem reads as

X ∈ 𝜔𝑖 if
𝑁∑︁
𝑠=1

log
(
𝜆𝑖 (𝑡𝑠)
𝜆𝑘 (𝑡𝑠)

)
≥ 𝛾𝑖𝑘 for all 𝑘 = 1, . . . , 𝑐, 𝑘 ≠ 𝑖 , (2.36)

where 𝛾𝑖𝑘 =
∫ 𝑇
0 (𝜆𝑖 (𝑢) − 𝜆𝑘 (𝑢)) 𝑑𝑢 + log (𝜋𝑘/𝜋𝑖). Here {𝜆𝑖 (𝑡)} are the class intensity func-

tions and {𝜋𝑖} are the prior probabilities. It is worth noting that the evaluation of the corres-
ponding Bayes risk as it was done in Section 2.2 is more involved.

Chapter 3

Spiking Neural Networks

In recent years artificial neural networks (ANN) have established themselves as a robust and
versatile machine learning model, capable of solving increasingly complex problems due to
advances in network algorithm design, specialized hardware, and the abundance of data. Despite
this, it is difficult to apply these models to purely event data. Such data is non-uniformly
distributed in time, particularly because – by definition – it can occur at any moment in time
and is rarely periodic. Furthermore, event data is often incomplete, making it ambiguous as
to whether nothing important had happened, or whether the information is truly missing. For
these reasons, in order to be processed by the ANN, event data must be modified in a way that
circumvents its event nature (e.g., by introducing additional features that encode time-of-event
or no change; data resampling). A solution that combines recent advances in deep learning with
the ability to process event data is a different type of neural network, called a spiking neural
network (SNN). In contrast to their ANN counterparts, the SNN model biological neurons in a
much more principled way, including their ability to process event streams similarly to biological
networks by inducing a neural coding scheme using a corresponding training loss function. By
operating directly in the event domain the spiking neural network is capable of leveraging
information content of each and every event, which stands in stark contrast to the redundant
information introduced as a preprocessing step of a typical ANN. This energy-efficiency is a
key driving factor behind the development of event-centric algorithms like the SNN.

In this Chapter we explore a specific sub-type of SNN that processes signals based on
the time of each individual event. We take into consideration the model design, properties
of the trained network, as well as its applications. Section 3.1.1 introduces several concepts
related to biological networks, whereas Section 3.1.2 provides a general overview of the SNN
and shows how these concepts are incorporated in the model design. Section 3.1.4 briefly
summarizes signal propagation rules of a time-to-first-spike SNN and additionally contains a
short study that reproduces the results of the original paper. Thereafter, Section 3.2 discusses

45

46 Chapter 3. Spiking Neural Networks

limitations identified for the chosen SNN model that stem from its assumptions. The proposed
modifications improve upon the model by reducing its processing time, stabilizing training
dynamics, allowing a finer control over the spiking activity, and proposing a framework for
processing signals varying over time. Finally, Section 3.3 verifies the performance of the
modified SNN model on a challenging Twitter bot classification task. Reusing the same dataset
from the previous Chapter allows us to compare the SNN approach with the kernel classifier
devised from the theory of point processes.

3.1 Introduction

3.1.1 Properties of biological networks

A biological neural network is a structurally complex system composed of neurons connected by
synapses, communicating with one another via electrical and chemical signals. Brain tissue is
metabolically expensive, primarily due to the need to process various sensory information [81].
This suggests the presence of evolutionary pressure to achieve high energy efficiency in the net-
work [82, 83]. Understanding how individual neurons respond to input stimuli and collectively
solve complex tasks is the foundation of neurobiology research.

The biophysical mechanisms responsible for neuronal spiking activity are well-studied [84].
This knowledge can be used to construct neuron models that encapsulate the underlying pro-
cesses at various levels of detail [11], with the choice of the model being application-specific.
For instance, the simplistic Integrate-and-Fire (IF) model [85] can be chosen as the compu-
tational unit of an artificial spiking neural network due to its low computational complexity.a

Conversely, the Hodgkin–Huxley model [86] realistically captures the biophysical phenomena
and is more commonly encountered in computational neuroscience research.

In biological neurons the membrane potential describes the difference in the electrical
potential between the cell interior and the surrounding extracellular medium. At rest, it is
about −70 mV relative to the medium. Ion pumps located in the cell membrane maintain this
potential difference. If in response to some input electrical stimulus the membrane potential
rises above a certain voltage threshold, the cell responds by generating an action potential
(Figure 3.1a). The generated signal can travel without attenuation over large distances along the
axon. It is understood that the action potential occurrence time is the carrier of information in
neural circuits, therefore all action potentials are customarily treated as identical, discarding any
differences in duration, shape or amplitude. This leads to the so-called all-or-nothing principle
that states that a neuron can either respond to its input stimulus or not (i.e., no other state is

aThe simplest variant of an IF neuron model is described in detail in Section 3.1.4.

3.1. Introduction 47

0 10 20 30

−60

−30

0
M

em
br

an
e

po
te

nt
ia

l [
m

V]

a)

0 10 20 30
Time [ms]

0

5

St
im

ul
us

[µ
A/

cm
²]

0 10 20 30 40 50

−60

−30

0

M
em

br
an

e
po

te
nt

ia
l [

m
V]

b)

0 10 20 30 40 50
Time [ms]

0

50

St
im

ul
us

[µ
A/

cm
²]

c)

𝒕

𝒕

𝒕

Presynaptic
neuron

Postsynaptic
neuron

Synapse

Dendrite

Spike train
travelling down
the axon𝒕

Figure 3.1: Overview of biological neuron properties and concepts. a) Neuron’s membrane potential
change in response to different input current stimuli, simulated according to the Hodgkin–Huxley model.
All stimuli start at the same time. The rapid increase of the membrane potential present in the blue and
orange curves is the action potential, which is the foundation of neural spike generation. The neuron’s
response depends on the total electrical charge transferred by the stimulus, therefore by varying the
width of the rectangular signal it is possible to observe that some stimuli (red, green) are too weak
to induce a spike response. Note that if the stimulus results in the action potential (blue, orange), it
has (roughly) the same shape, regardless of the stimulus’ intensity. This phenomenon is known as the
all-or-nothing principle. b) Neuron’s membrane potential change in response to a sequence of input
current stimuli, simulated according to the Hodgkin–Huxley model. The first three rectangular pulses
have the same intensity. Out of these three, only the first stimulus produces an action potential. After
spike generation the neuron enters a refractory period, which limits its ability to respond to inputs. The
second stimulus occurs during an absolute refractory period, meaning that no response can be elicited.
The third stimulus is presented during a relative refractory period in which an action potential could be
produced if the stimulus was much stronger. Note that the fourth stimulus is weaker than the others,
but is still able to induce a spike response because it occurs outside the refractory period. c) Abstract
representation of the connectivity and signal propagation in biological networks. Neurons communicate
via neurotransmitters released in the synapse in response to spike trains (action potentials) propagated
along the axon. Due to the importance of synapse in the information transfer, each neuron can be labeled
either pre- or postsynaptic, depending on its position relative to the signal propagation direction. Note
that this distinction is synapse-specific – a postsynaptic neuron can be a presynaptic neuron in other
connections.

possible). Once the action potential is generated, the cell enters a brief refractory period in
which it is unable to respond to further stimulation (Figure 3.1b).

The action potential travels along the axon until it reaches a connection with another neuron
– the synapse (Figure 3.1c). Here the presence of an action potential of the presynaptic neuron
might result in a release of a neurotransmitter that binds to the other side of the synapse. This
binding causes either an inflow or an outflow of ions in the postsynaptic neuron, depending on the

48 Chapter 3. Spiking Neural Networks

type of the synapse. In artificial neural networks this process is abstracted as a (synaptic) weight,
with its sign and magnitude controlling the impact of one neuron on another. The probability
of neurotransmitter release and the resulting postsynaptic neuron’s conductance change can be
influenced by the history of activity at the synapse. This process is known as activity-dependent
synaptic plasticity, which plays a crucial role in learning and memory [87, 88]. It is regarded
as the neuronal basis of unsupervised learning through spike-timing-dependent plasticity [89].

The study of neural coding attempts to describe how stimulus attributes are represented by
action potentials through various temporal patterns [90]. The initial understanding was that
cells primarily communicate using rate-coding, that is by varying the firing rate in response to
their input [91, 92, 93]. Recently however, the importance of two other modes of operation
has been established, namely timing [94, 95, 96] and synchrony coding [97, 98, 99]. The
former is related to the precise occurrence time of events while the latter is more common
in neural ensembles, describing spike coincidence between multiple event streams or phase-
locked, periodic spike sequences. Another plausible hypothesis for information coding used by
biological neurons is the rank order coding [100] which forgoes the precise timing information
in favor of a relative ordering of spikes generated by presynaptic neurons. Such encoding results
in sparse signal processing that is tolerant to variations as long as they preserve the relative
order of spikes [101].

Studying neural code is challenging. In addition to the technical difficulties that arise during
signal measurement [102], one must also attempt to isolate the features of the response under
noisy conditions of an active neural circuit. Furthermore, the neural response varies from trial
to trial, even if the exact same stimulus is presented. This implies that it is impossible to predict
the timing of each spike deterministically [103]. The randomness of neural responses in in vivo
measurements can be described in terms of the theory of point processes [104, 105, 106, 107].

3.1.2 Spiking neural networks

Spiking neural networks are considered to be the third generation of neural networks [108] –
after artificial neural networks based on dense (or matrix-multiplication) layers and convolu-
tional neural networks (CNN) which mainly use the convolution operation. The SNN process
data using impulses which are asynchronously propagated through the entire network. This
processing scheme stands in contrast to the classic artificial networks which require that all
neurons within a single layer must finish their computation before the signal flows to the sub-
sequent layer. Therefore, it is possible to obtain the model output as soon as the first output
spike is available (that is: factoring-in the time delay introduced by the neurons), before the
entire input sequence is observed (Figure 3.2). Note that such an early-spiking output is only
a coarse approximation, requiring longer observation periods in order to obtain results with

3.1. Introduction 49

higher confidence. Furthermore, the spiking neurons need not respond to the input signal at
all, which removes them from the overall model computation. This stands in contrast to the
ANN and CNN models in which a neutral response (i.e., zero) still needs to be processed by the
subsequent layers. Such properties of the SNN might explain why they are becoming popular
candidates for energy-efficient processing units [109, 110].

Overall, the aim of the SNN is to model biological networks in a much more principled
way. Depending on the level of detail captured by the SNN, its neurons can be sensitive to
the relative timing of inputs, experience a refractory period or even model synaptic plasticity.
Most methods used to obtain a functional SNN generally fall into one of three categories:
network conversion (training an ANN and mapping each component of the source network to
its spiking equivalent) [111, 112, 113, 114, 115], synaptic-plasticity-aware training (taking ad-
vantage of long-term potentiation and long-term depression effects) [116, 117], or training with
backpropagation [118, 119, 120]. The latter approach necessitates formulating custom training
rules that take into account the fact that the activation function of biological neurons – the
all-or-nothing principle – is not differentiable. Hybrid conversion-backpropagation approaches
have also been explored [121].

Network conversion of the ANN to the SNN attempts to map each neuron of the source
network to its spiking equivalent. The main principle behind this process is that the spiking
neuron’s firing rate corresponds to an analog activation of the ANN neurons. The authors
of [112] introduce spiking equivalents to common building blocks of deep neural networks, al-
lowing them to achieve a very close performance to the ANN on a moderately difficult CIFAR-10
dataset. However, they note that the deeper the network is, the smaller the rate of firing becomes
and the delay before obtaining reasonably good prediction increases.

In contrast to the network conversion methods, backpropagation-based techniques are not
limited to the rate-based encoding (although they are certainly more popular in this context
than other neural encoding schemes). One approach to training a rate-coding network using
backpropagation is based on designing the training procedure of an ANN in such a way that
attempts to model the behavior of the final spiking model [122]. This includes (but is not
limited to): changing activation functions of neurons from ReLU (Rectified Linear Unit) to the
smooth LIF (Leaky Integrate-and-Fire) or injecting noise to the output of each neuron. The
latter trick takes advantage of the fact that rate-coding spiking neurons oscillate around a “true”
mean firing rate. A large disadvantage of this approach is that it requires the driving training
signal to be either static or uniformly distributed in time.

A more direct application of backpropagation to optimizing the weights of a spiking neural
network assumes the differentiability of neuron membrane potential functions (with respect to
to the entire presynaptic spiking history) and treats the discontinuity at the spike-generation

50 Chapter 3. Spiking Neural Networks

0 1 2 3 4 5
Time

−1

0

1

Am
pl

itu
de

a)

0 1 2 3 4 5

Input

b)

Hidden #1 τLP

Hidden #2 τLP

Output τLP

τMR

0 1 2 3
Model response time τMR

0.5

1.0

1.5

PM
F

c)

0 1 2 3 4 5
Time

−1

0

1

Am
pl

itu
de

0 1 2 3 4 5

Input

Hidden #1 τ[1]
LR

Hidden #2 τ[2]
LR

Output τ[3]
LR

τMR

0 1 2 3
Model response time τMR

0.0025

0.0050
PD

F

Figure 3.2: Comparison of signal propagation and response time of the ANN (left) and the SNN (right)
models. Shaded gray area denotes the analysis window. a) Conversion of a time-varying signal to
the representation expected by the model. Left: signal sampling at a fixed time resolution. Each input
neuron observes the amplitude at a given point in time. Right: level-crossing sampling at fixed amplitude
threshold levels. Each input neuron observes the time when the signal crosses a given threshold. b) Signal
propagation through a three-layer network versus time. 𝜏LP denotes layer processing time, 𝜏LR is the
layer response time, whereas 𝜏MR is the model response time. Note that 𝜏LP, 𝜏LR and 𝜏MR are exaggerated
for illustrative purposes. Left: all neurons within a single layer must finish their computation before the
signal flows to the next layer. Each neuron response is color-coded to denote amplitude. The responses
in the input layer match the signal amplitude. 𝜏LP is independent of the input signal and is approximately
identical for all layers in the network. Right: asynchronous propagation of spikes through the entire
network. Layer and model response times 𝜏LR, 𝜏MR are measured relative to the first spike observed at
layer or model input, respectively. Note that the SNN is able to produce a model response before the
entirety of input signal (within the analysis window) is observed. The input layer responses are color-
coded to denote the signal amplitude at event time. In subsequent layers there is no correspondence
between the response and the input signal. c) Model response time distributions. For illustrative
purposes the dependence of 𝜏MR on hardware running the model is ignored. Left: probability mass
function. Model response time depends only on the model computational complexity. Right: probability
density function. The distribution is supported on a semi-infinite interval because the left bound depends
on the model computational complexity. 𝜏MR is different for each example, hence it is not possible to
know in advance how much time exactly it will take to produce a response (although 𝜏MR is bounded
from above by the width of the analysis window and neuron-specific time constants).

3.1. Introduction 51

instant as noise [119]. Such approach has already proven itself to be effective in training
the SNN, leading to efficient implementations in computational frameworks [120]. On the
other hand, training a timing-sensitive SNN with backpropagation requires a different set of
tricks [123], with the crucial one being that during training a neuron is not allowed to spike
more than once until a new training example is presented (in other words: the refractory period
is much longer than the length of a single training example).

There are several factors that inhibit research on the SNN. One of them is the availability
of event data [6, 14, 10]. In case such dataset is unavailable (due to its proprietary nature or
when the original signal exists in the analog domain), researchers can opt to transform existing
sets of data to an event structure [21, 20, 19]. Note that the SNN models require that their
input data is encoded using events, whereas carefully-designed ANN can process either the
event-coded, or the original signal. Regardless of how the event data is obtained, it is possible
to compare the SNN with nonspiking models trained on the same task. Another inhibiting
factor is the computational complexity of simulating the SNN on typical hardware. For this
reason, the research on spiking neural networks goes hand-in-hand with the development of
dedicated neuromorphic hardware [124].

Despite being a relatively new field of research, the SNN have already been applied to a vari-
ety of tasks. In [125] a spiking neural network was used to train an electrocardiographic (ECG)
arrhythmia classifier. Input data stream is converted to events related to a relative increase or
decrease in signal amplitude (i.e., two event types). This naturally results in a variable firing
rate over the data stream, with its maximum corresponding to a QRS complex. The input event
sequence is then processed by a recurrent SNN that, interestingly enough, is not trained, instead
relying on the initial weights sampled from some pre-defined distribution. Finally the output of
the recurrent SNN is connected to a readout layer comprised of several leaky integrate-and-fire
neurons, trained to discriminate target classes using the Support Vector Machine (SVM). Dur-
ing inference a winner-takes-all strategy is employed to determine a class based on the output
spiking neuron membrane potential. A similar idea has been also applied to hand-gesture
recognition from an electromiography (EMG) recording [126].

An example of a model employing a biologically-inspired learning rule is the sound clas-
sification pipeline presented in [117]. Events were extracted from the raw signal by fitting a
Self-Organizing Map (SOM) on Mel-frequency cepstral coefficients (MFCC) computed for an
audio signal frame. Spike trains represent SOM activations in each consecutive window and are
used to drive output readout neurons trained using a modified Tempotron rule [116]. One can
easily notice that the event stream defined in this way is uniformly distributed in time, which
allowed the authors to compare the spiking architecture with recurrent neural networks trained
on the same task.

52 Chapter 3. Spiking Neural Networks

Finally, a visual-scene detection model from [127] is trained by converting an output
layer logistic regression classifier to the spiking domain. In contrast to previously presented
applications, this model directly operates on the spiking data from a neuromorphic Dynamic
Vision System (DVS) with raw spike trains convolved with a set of Gabor filters and subsampled
prior to reaching readout layer.

3.1.3 Training the SNN with backpropagation

Training artificial spiking neural networks with backpropagation leverages existing methods,
algorithms and best practices developed for artificial nonspiking neural networks and deep
learning. In doing so it forgoes biological plausibility, evident in training methods based
on spike-timing-dependent plasticity effects such as the ReSuMe algorithm [128, 129]. One
of the first proposed gradient-descent-based learning rules for timing-encoding networks was
the SpikeProp algorithm [130] and its variants. It trains a multilayer feedforward network of
neurons firing a single spike. SpikeProp defines the learning rules in terms of the dynamics
of a general Spike Response Model (SRM) of neurons. The original SpikeProp algorithm has
since been extended to allow neurons in the input, hidden [131] and output [132] layers to spike
multiple times in response to input patterns.

The SpikeProp paper established key traits of backpropagation algorithms present in sub-
sequent works. In particular, the algorithm has the following characteristics: 1) the SNN
is simulated over a finite time window with a fixed time step, recording changes in the in-
ternal state (membrane voltage, synaptic current) of all neurons during the forward pass and
2) approximating (smoothing) the spike-generation function to avoid a discontinuous derivative
(unless this discontinuity is ignored and treated as noise, as in [119]). Backpropagation-based
approaches for training time-coding SNN can thus be divided into two categories, depending
on how much information from the forward pass is needed to compute the backward pass. In
event-driven learning the error is propagated only through spikes [133, 134, 135, 136]. Most
notably, EventProp [137] defines exact gradients and can be applied to neuron models without
an analytical expression for the postsynaptic potential kernels. Nevertheless, similarly to other
existing algorithms, EventProp still requires simulating the network in the forward pass in order
to compute postsynaptic events [138]. As these algorithms propagate the error only through
spike events, they are prone to failing to converge when the network does not generate enough
events to process the signal end-to-end.

The other category that stands in contrast to the event-driven learning is the RNN-like
learning (named after its similarity to nonspiking artificial recurrent neural networks), in which
the error information is also propagated through the computation time steps which did not elicit
a spike [139, 140]. The SuperSpike [141] and SLAYER [142, 143] models are examples of

3.1. Introduction 53

such algorithms. Surrogate gradient methods, commonly used in the RNN-like learning, are
an alternative approach for overcoming the discontinuous derivative of the spike-generating
function [144]. Typically, a standard backpropagation through time algorithm is used, as in
the RNN, with one minor modification: a continuously differentiable function is used in the
backward pass as a surrogate of the spike-generation function derivative. Finding the optimal
surrogate gradient function is a topic of an ongoing research [145, 146]. Despite achieving a
remarkable success in training deep SNN [147, 148], surrogate gradient methods represent an
even further departure from energy-efficient, biologically-inspired learning.

Recently, there has been some research conducted on the single-spike time-to-first-spike
SNN that specify learning rules which do not require simulating the network over time [123,
149, 150, 151]. Concretely, [123] trains an SNN with simplistic Integrate-and-Fire (IF) neur-
ons by deriving locally exact gradients of the spike-generating function. A similar idea is
explored in [150] where the instantaneous synaptic current kernel function is used instead of an
exponentially decaying kernel. Following up on these works, [149] shows how this algorithm
can be applied to the more general SRM neuron with an alpha function of synaptic transfer.
Furthermore, [151] applies popular deep learning techniques such as max-pooling and batch
normalization to this model type, which alleviates issues with training deeper neural architec-
tures. However, to the best of our knowledge, there has been no research that shows how this
model can be applied to actual spike trains rather than single spikes.

3.1.4 Signal propagation in the time-to-first-spike SNN

In the previous Section, the time-coding single-spike time-to-first-spike SNN group of models
has been briefly introduced. These models are sensitive to the timing of input events and not
their rate. Furthermore, they are truly event-centric, evaluating the state of the network at each
generated event rather than at fixed points in time determined by the simulation grid. They are
able to do so because they rely on a set of equations that determines when each postsynaptic
neuron elicits its first spike. For these reasons, they were the focus of the studies conducted in
this thesis.

Let us briefly summarize the model first described by Mostafa [123]. This type of network
uses the IF neurons with exponentially decaying synaptic current kernels. The membrane
voltage of an IF neuron with 𝐶 presynaptic neuron connections is governed by the differential
equation

𝑑𝑉 (𝑡)
𝑑𝑡

=

𝐶∑︁
𝑐=1

𝑤𝑐𝑖𝑐 (𝑡) , (3.1)

where 𝑤𝑐 is the weight associated with the 𝑐-th synapse (channel), and 𝑖𝑐 (𝑡) is the synaptic
current driving signal. Assuming that every presynaptic neuron observes a single event at

54 Chapter 3. Spiking Neural Networks

time 𝑡𝑐, the presynaptic current is

𝑖𝑐 (𝑡) = exp
(
− 𝑡 − 𝑡𝑐
𝜏syn

)
𝑢(𝑡 − 𝑡𝑐) , (3.2)

with 𝜏syn being the synaptic current time constant and 𝑢(𝑡) being the step function. The solution
to the system of equations defined by (3.1) and (3.2) is given by

𝑉 (𝑡) = 𝑉0 + 𝜏syn

𝐶∑︁
𝑐=1

𝑤𝑐

[
1 − exp

(
− 𝑡 − 𝑡𝑐
𝜏syn

)]
𝑢(𝑡 − 𝑡𝑐) , (3.3)

where 𝑉0 = 𝑉 (0) is the initial membrane voltage. The neuron is said to fire at time 𝑡out if the
voltage crosses a threshold 𝑉thr from below, i.e., 𝑡out = arg min𝑡 𝑉 (𝑡) ≥ 𝑉𝑡ℎ𝑟 , after which the
IF neuron becomes unresponsive to input signals for some time, called the refractory period 𝜏ref.
Once the refractory period subsides, the voltage is reset to zero and the summation over impulses
in (3.3) can resume. For now let us consider the case 𝜏ref →∞ , meaning that the neuron is
unable to respond to new inputs following the output spike generation. This is an implicit
assumption in single-spike SNN [123, 149, 150, 151].

Assuming without the loss of generality𝑉0 = 0 and that there exists a subset of input spikes
that cause the postsynaptic neuron to fire

𝑄 = {𝑐 : 𝑡𝑐 < 𝑡out} , (3.4)

i.e., the causal set of input spikes, the solution for 𝑡out is given in the implicit form

𝑧out =

∑
𝑐∈𝑄 𝑤𝑐𝑧𝑐∑

𝑐∈𝑄 𝑤𝑐 − 𝑉thr
𝜏syn

, (3.5)

where
𝑧𝑐 (𝑡) = exp

(
𝑡𝑐

𝜏syn

)
, 𝑧out(𝑡) = exp

(
𝑡out
𝜏syn

)
. (3.6)

For completeness we assign 𝑧out = ∞ when 𝑄 = ∅ . A necessary condition for the postsynaptic
neuron to fire is that the sum of weights of the causal set of neurons be strictly larger than the
scaled threshold voltage [123], i.e., that

1 ≤ 𝑧out < ∞ ⇐⇒
∑︁
𝑐∈𝑄

𝑤𝑐 >
𝑉thr
𝜏syn

. (3.7)

Note that the condition in (3.7) assures that the right-hand side of (3.5) is positive. The
formula (3.5) is differentiable with respect to the transformed input spike times {𝑧𝑐} and
synaptic weights {𝑤𝑐} with partial derivatives

𝜕𝑧out
𝜕𝑧𝑐

=

𝑤𝑐∑

𝑐∈𝑄 𝑤𝑐−
𝑉thr
𝜏syn

if 𝑐 ∈ 𝑄

0 otherwise
, (3.8)

3.1. Introduction 55

𝜕𝑧out
𝜕𝑤𝑐

=

𝑧𝑐−𝑧out∑

𝑐∈𝑄 𝑤𝑐−
𝑉thr
𝜏syn

if 𝑐 ∈ 𝑄

0 otherwise
, (3.9)

therefore it can be used to train a spiking network using the backpropagation algorithm.
The original paper showcases the earlier described spiking neural network model in terms

of two classification problems. The following Sections briefly summarize the conducted
reproducibility study on those same machine learning tasks. This was an important step in the
overall context of analyzing this time-to-first-spike SNN: first it assessed the correctness of our
own implementation (as no code repository was shared publicly by the authors of [123]), and
further on, those results could be used as a reference point when discussing the limitations and
extensions of the model in subsequent Sections.

3.1.4.1 XOR task

The first scenario used to evaluate the proposed spiking neural network model was an SNN ver-
sion of training a dense layer to tackle the XOR task. A model behaving as a XOR logic gate
must have the following properties:

1) Two boolean inputs (0 or 1),
2) One boolean output: returning the value 1 if either one of its inputs is 1 while the other

is 0, and returning 0 otherwise.
Notably, XOR logic is nonlinear, i.e., it cannot be represented by a neural network without
any nonlinear activation function acting on layer outputs. One possible interpretation of the
XOR logic in a spiking context is determining whether inputs spike at the same time or not.
Of course, it is debatable whether this means that the events must occur at the exact same
time, or whether there is some tolerance. Importantly, both inputs must have an associated
spike time, as having no events would make the model wait infinitely long before producing its
decision. In any case, the authors of [123] considered only event coincidence in the strict sense,
and built a two-layer model with 4 neurons in the hidden layer and 2 neurons in the output
layer. As the entire SNN model operates on the principle of the time of the first spike (3.5),
spikes produced by the output layer are compared with one another in order to produce the
final decision, determining which output neurons spiked first. This comparison between output
spikes constitutes an example of biological rank-order coding [100] in neural circuits. The
XOR task along with the SNN model is summarized in Figure 3.3.

The loss function used to train the SNN has two components. The first one is a modification
of the cross-entropy loss with softmax normalization:

𝐿 (𝑧, 𝑦) = −
𝑃∑︁
𝑝=1

𝑦𝑝 ln

(
exp

(
−𝑧𝑝

)∑𝑃
𝑝=1 exp

(
−𝑧𝑝

)) , (3.10)

56 Chapter 3. Spiking Neural Networks

a)

𝑝 𝑞 𝑝 XOR 𝑞

0 0 0

0 1 1

1 0 1

1 1 0

c)

𝐀 𝐁 𝐄𝐱𝐩𝐞𝐜𝐭𝐞𝐝 𝐨𝐮𝐭𝐩𝐮𝐭

𝑡0 𝑡0 𝑡𝐶 > 𝑡𝐷

𝑡0 𝑡1 𝑡𝐶 < 𝑡𝐷

𝑡1 𝑡0 𝑡𝐶 < 𝑡𝐷

𝑡1 𝑡1 𝑡𝐶 > 𝑡𝐷

b)

A

B

C

D

Figure 3.3: a) Truth table of the XOR operator applied to two Boolean variables 𝑃, 𝑄. b) Schematic of
the SNN trained on the XOR task. c) Training objective of the XOR-SNN. Hyperparameters 𝑡0 and 𝑡1 are
spike times associated with input neurons A and B, and are fixed throughout the entire training process.
The network is trained so that outputs C and D spike at times 𝑡𝐶 , 𝑡𝐷 such that one of them is earlier than
the other.

where:
• 𝑃 – the number of output channels (for XOR task 𝑃 = 2),
• 𝑦𝑝 – a binary indicator (0 or 1) of the desired output channel 𝑝 spiking first,
• 𝑧𝑝 – the transformed spike time of the 𝑝-th output channel.

This loss function component encourages the model to use rank-order coding to represent the
output, without explicitly specifying the time of each spike (which would be necessary when
minimizing a loss function based on Mean Squared Error between the output spikes train and
some reference). The second component of the loss function is a spike regularization term,
which promotes network spiking activity by ensuring a nonnegative denominator of (3.5)

𝑅spiking =

𝐻∑︁
ℎ=1

𝑅ℎ , (3.11)

where 𝑅ℎ = max
(
0, 𝑉thr
𝜏syn
−∑𝐶ℎ

𝑐=1 𝑤𝑐ℎ

)
and the index ℎ runs over all neurons in the network 𝐻.

The overall loss function minimized by the model is

𝐿total(𝑧, 𝑦) =
1
𝑁

𝑁∑︁
𝑛=1

𝐿𝑛 (𝑧, 𝑦) + 𝛾𝑅spiking , (3.12)

where 𝐿𝑛 (𝑧, 𝑦) is the cross-entropy loss (3.10) for the 𝑛-th example of the batch of size 𝑁 ,b and
𝛾 is a hyperparameter.

Given a toy-problem nature of the XOR task, the model was trained with a total of four
input examples, setting the two input spike parameters outlined in Figure 3.3 to 𝑡0 = 0 and
𝑡1 = 2 𝜏syn. Notably, the first and the last case are the same (both inputs spiking at the same
time), just shifted slightly in time. Additionally, the spike times are specified relative to the
synaptic time constant 𝜏syn to avoid training convergence problems occurring when 𝜏syn is

bThe term “batch” or “minibatch” denotes the collection of examples presented as network layer input at the
same time. In this work we use these terms interchangeably.

3.1. Introduction 57

chosen incorrectly relative to the input spikes. The IF-neuron-specific parameters were fixed
to 𝜏syn = 1 and𝑉thr = 1. The training proceeded over 1000 epochs with a learning rate 𝜆 = 0.06
and the synaptic regularization parameter 𝛾 = 50.

For such a simple spiking neural network model, it is possible to plot how the membrane
voltage of each individual neuron changes in response to input spikes. An example of such
spike-voltage plot for a trained model is presented in Figure 3.4. It shows that the network
correctly resolves the XOR logic based on the concept of “early” and “late” input spikes. One
can also notice that shifting the input spikes in time causes the model to respond in the exact
same way, just at a different time. This means the proposed SNN has no notion of absolute
time, instead operating on the time relative to the first input spike. As a result of this property,
merely shifting spike trains in time cannot be used as a data augmentation method when training
such an SNN, although for this specific model it does have a measurable impact on training
dynamics. This topic shall be further discussed in Section 3.2.2. Overall, successfully training
the SNN model to behave as a XOR logic gate shows that it is nonlinear, with its nonlinearity
induced by the causal set of input spikes.

3.1.4.2 MNIST classification task

The other task used to evaluate the time-to-first-spike SNN model was the MNIST digit clas-
sification [152]. This dataset is composed of 28 × 28 grayscale images of ten digits. The
MNIST dataset is almost class-balanced and has a predefined split into 60,000 training images
and 10,000 test images. It is commonly used when evaluating models for image recognition due
to its simplicity – newly proposed ideas that do not successfully train a model on MNIST have
little hope of solving any reasonably challenging problem. Additionally, choosing a dataset
that is widely known and easily accessible means that the results of research can be readily
reproduced.

In order to analyze the MNIST images by the SNN model, they first need to be converted
into the spiking domain. While there exists an event-based Dynamic Vision Sensor (DVS)
variant of MNIST [153], using it prevents researchers from comparing the results with those
achieved by nonspiking models. And so, the authors [123] chose to preprocess the images of
the MNIST dataset in the following way:

1) Each 28 × 28 image is first flattened into a 784-element vector.
2) The vector representation of each image is binarized with a threshold of 50% of global

maximum pixel intensity.
3) One of two time instants 𝑡0 = 0 or 𝑡1 = 1.79 𝜏syn is assigned to the value of each bit (white

and black pixels, respectively), additionally setting 𝜏𝑠𝑦𝑛 = 1.

58 Chapter 3. Spiking Neural Networks

a)

0 2 4
0.0

0.5

1.0

Ou
tp

ut

0 2 4
0.0

0.5

1.0

Hi
dd

en

Time [τsyn]

b)

0 2 4
0.0

0.5

1.0

Ou
tp

ut
0 2 4

0.0

0.5

1.0

Hi
dd

en

Time [τsyn]

c)

0 2 4
0.0

0.5

1.0

Ou
tp

ut

0 2 4
0.0

0.5

1.0

Hi
dd

en

Time [τsyn]

d)

0 2 4
0.0

0.5

1.0

Ou
tp

ut

0 2 4
0.0

0.5

1.0

Hi
dd

en

Time [τsyn]

Figure 3.4: Spike-voltage plots of the time-to-first-spike SNN trained on the spiking XOR task. Each
color is associated with a different neuron. Dashed lines and arrows denote spike events. a) 0 XOR 0 = 0,
b) 1 XOR 1 = 0, c) 0 XOR 1 = 1, d) 1 XOR 0 = 1. Note that the voltage responses for scenarios (a) and
(b) are exactly the same, just shifted in time.

3.2. Overcoming the limitations of the model 59

The evaluated SNN was a three-layer feedforward 784-400-400-10 network (denoting the
number of neurons in input, hidden, and output layers, respectively). The original study
additionally considered a 784-800-10 network, but the former architecture was chosen as the
focus of this reproducibility study as multilayer networks are more difficult to train due to
the vanishing gradient problem [154]. The model was trained to minimize the loss function
composed of three terms

𝐿total =
1
𝑁

𝑁∑︁
𝑛=1

𝐿𝑛 (𝑧, 𝑦) + 𝛾𝑅spiking + 𝜆
𝐻∑︁
ℎ=1

𝐶ℎ∑︁
𝑐=1

𝑤𝑐ℎ , (3.13)

with the first two being the same as in the XOR task (3.12), whereas the last component is the
𝐿2 regularization parameterized by 𝜆. The model was optimized over 5000 iterations in batches
of 128 examples, with a learning rate of 10−3, a synapse regularization parameter 𝛾 = 0.008,
and 𝐿2 regularization parameter set to 𝜆 = 5 ·10−5. Similarly to the original study, the gradients
are clipped so that the Frobenius norm of the gradient with respect to weights is at most equal 10.
The parameters related to the IF-neuron were the same for all neurons in the network: 𝜏syn = 1
and 𝑉thr = 1.

We have successfully trained a network that achieves an F1-score of 0.971, computed over
the test set examples, which is equal to the result reported in the original study. Additionally,
Table 3.1 shows that both models perform similarly to what other researchers report when
training the SNN classifiers on the MNIST data. Finally, by analyzing the empirical distribution
of spike times in the hidden and output layers, we verified the ability of the trained model to
elicit an output spike as soon as the signal is propagated through the network, even if some of
the neurons in the hidden layer produce a spike much, much later (Figure 3.5). This also shows
that, in general, the time-to-first-spike SNN does not need many spikes to produce a response.
This property shall be discussed in more detail in Section 3.2.3.

3.2 Overcoming the limitations of the model

The time-to-first-spike SNN model introduced in previous Sections presents an interesting
concept of an artificial network able to process information on a level of each individual event.
Moreover, it formulates a set of rules that allows training a network end-to-end in the spiking
domain, which circumvents the need for input data to exist in a traditional, nonspiking domain.
While it might be tempting to employ this model as-is to solve some nontrivial machine learning
problem and report on the properties of the trained SNN, it is important to take a step back
and assess its capabilities and limitations. Therefore, this Section presents an overview of
identified shortcomings of the model that stem from algorithmic design, as well as established

60 Chapter 3. Spiking Neural Networks

Table 3.1: Classifier performance of different SNN and the nonspiking k-NN baseline on MNIST (best
reported results from each paper).

Input encoding Model type Performance
- k-NN Euclidean baseline [152] 0.950

firing rate

Spiking RBM [155] 0.926
STPD-trained network [156] 0.950
Spiking NN [157] 0.986
Spiking CNN [157] 0.991

spike-time
Spiking NN (784-800-10) [123] 0.975
Spiking NN (784-400-400-10) [123] 0.971
Spiking NN (784-400-400-10) (our) 0.971

0.0
0.4
0.8
1.2
1.6

De
ns

ity

0 1 2 3 4 5 6
Time

0.0
0.8
1.6
2.4
3.2

De
ns

ity

Hidden layer spike time(s) First output spike time(s)

0

1

CD
F

0

1

CD
F

Figure 3.5: Histograms of spike times in the hidden and output layers across the MNIST test set images.
Almost all first output layer spikes, i.e., the ones that determine the classifier prediction, are produced
before the rest of the network elicits a response.

assumptions. Each limitation is discussed in detail and is accompanied by a proposed set of
modifications that address the issue. The impact of the proposed changes is also assessed.

Throughout the rest of this document we refer to a single layer of the time-to-first-spike
SNN as a spiking dense layer. This serves as a reminder that, similarly to the ANN, spiking
neurons are also organized in layers, and that the computation conducted by a single layer is
analogous to the dense (matrix multiplication) layer in nonspiking networks.

3.2. Overcoming the limitations of the model 61

3.2.1 Reducing the layer processing time

One challenging aspect of the algorithm summarized in Section 3.1.4 is the requirement to find
the causal set of input neurons for a single output neuron. In practical applications multiple
neurons form a single layer, and multiple sequences are passed as layer input at the same time
during training to take advantage of minibatch stochastic gradient descent-based optimization
of network weights. In such scenarios one could take a naïve approach to find the causal sets
of all output neurons for all input sequences, but – as presented in the flowchart in Figure 3.6a
– that would necessitate creating several loops that would negatively impact the computational
complexity of the algorithm. Importantly, when searching for the causal set it is not enough
to find the (chronologically) first set of inputs that would result in the output spike generation.
It is necessary to check additional input spikes to see if they could have contributed to the
spike generation (or even suppress the output altogether). A concrete example of this nontrivial
problem is presented in Figure 3.6b.

However, it must be noted that searching for the causal set is neuron- and example-specific,
and so the two outermost sequential loops in Figure 3.6a could be substituted with running the
algorithm in parallel. Furthermore, instead of iteratively finding the combination that would
result in a causal set, we could check all combinations and return the the one that results in the
earliest 𝑡out. These observations form a conjecture that it is possible to propose a vectorized
implementation of the spiking dense layer that can be plugged into modern deep learning
frameworks such as TensorFlow [158] or PyTorch [159].

The aim of the following Sections is to describe an algorithm that does the computation
in a single pass over data, without any explicit, high-level loops. The main challenge with
vectorizing this algorithm is the causal set selection step, because it depends not only on the
weights matrix, but also the actual input sequence. Hence, in contrast to regular dense layers,
the spiking dense layer must be described in terms of third-order tensors instead of matrices.

Note that the presented algorithm has been developed independently from the one briefly
mentioned in [151], albeit the general structure of the algorithm is the same. Our work is much
more verbose, describing the algorithm in detail in terms of tensor algebra with a focus on
edge-case scenarios. We also quantify the improvement over the original approach.

3.2.1.1 Vectorized algorithm highlights – computation of the causal set

Before diving deeper into the tensor algebra description of the vectorized algorithm, let us
provide a high-level overview of the computation, highlighting how it relates to the original
description in [123]. As mentioned earlier, iteratively finding the input event combination that
would result in a causal set is the computational bottleneck of the network. For this reason, we

62 Chapter 3. Spiking Neural Networks

a) Start

Stop

Determine
time to first
output spike

Determine time
to first output

spike

Get next
spike train

Create an ordered set of
 pairs, sorted in an

ascending order of events

Choose next
output neuron

No

No

Yes

Yes

Return output
neuron spike

and the causal set

Exit

Return output
spike trains
produced

in response to
input signals

Store the
generated output
neuron spike time

(if any)

Indicate that
no spike

is generated

Assume an
ordered set of

event pairs

Initialize the candidate
causal set with the

chronologically first event
Apply

transform

Apply
transform

Add next
event to

No

No

Yes

Yes

Yes

No

Last output
neuron?

Last input
spike train?

Is the next
event later
than ?

Can events
in generate a

spike ?

Are there any
events not in

?

0 2 4 6 8 10
0.0

0.5

1.0

Vo
lta

ge

w 1
=
0.6

0

b)

0 2 4 6 8 10

w 1
=
0.6

0
w 2

=
−0

.35

0 2 4 6 8 10

w 1
=
0.6

0
w 2

=
−0

.35
w 3

=
0.7

6

0 2 4 6 8 10
0.0

0.5

1.0

Vo
lta

ge

w 1
=
0.6

0
w 2

=
−0

.35
w 3

=
0.7

6
w 4

=
0.0

5

0 2 4 6 8 10

w 1
=
0.6

0
w 2

=
−0

.35
w 3

=
0.7

6
w 4

=
0.0

5
w 5

=
−0

.30

0 2 4 6 8 10

w 1
=
0.6

0
w 2

=
−0

.35
w 3

=
0.7

6
w 4

=
0.0

5
w 5

=
−0

.30
w 6

=
−0

.40

Figure 3.6: a) Flowchart of the naïve implementation of the spiking dense layer. The two exit conditions
at the bottom right imply that 𝑄 ≜ 𝑄∗ when 𝑡out < ∞ and 𝑄 = ∅ otherwise. b) Iterative search for the
causal set of inputs for an output neuron parameterized by 𝜏syn = 1 and 𝑉thr = 1. X-axis denotes time as
multiples of 𝜏syn. Each plot describes the change in membrane voltage as additional event pairs {𝑧𝑐, 𝑤𝑐}
are considered when constructing 𝑄∗. Note that for this input sequence the neuron does not generate an
output spike, despite there being two combinations (with 3 or 4 events) that could elicit a spike.

3.2. Overcoming the limitations of the model 63

shall focus on this part of the algorithm in this Section. The two outermost loops – repeating
the aforementioned computation for every output neuron and every input example pairwise
combination – can be unrolled (executed in parallel) because their results are independent of
any other pair.

For now let us assume that the event sequences are already sorted and transformed according
to (3.6), resulting in vectors z̃ for the input spikes and w̃ for the synaptic weights (with the
tilde diacritic highlighting that vectors are indexed such that events in z are sorted).c This is a
necessary preprocessing step regardless of the choice of the algorithm. Then, Algorithm 3.1
presents the pseudo-code description of the iterative causal set search. We have already shown
in Figure 3.6b that the iterative search cannot stop early even if the denominator of the current
candidate output spike 𝑧∗out is positive, i.e., the necessary condition in (3.7).d That is because
it must also be larger than all events indexed by the current candidate causal set 𝑄∗ and, at
the same time, smaller than the next input event �̃�. This requirement arises from the sufficient
condition implied by the definition of the actual causal set in (3.4).

Algorithm 3.1: Iterative causal set search for a single output neuron observing an event sequence.
1 Inpu t : z̃ # v e c t o r o f s o r t e d i n p u t e v e n t s o f l e n g t h 𝐶

2 Inpu t : w̃ # v e c t o r o f s y n a p t i c we i gh t s a s s o c i a t e d wi th e l emen t s i n z̃
3 Output : 𝑄 # c a u s a l neuron s e t
4 Output : 𝑧out # t r a n s f o r m e d o u t p u t s p i k e t ime
5 Begin :
6 𝑄∗ ← {1} # i n i t i a l i z e t h e c a n d i d a t e c a u s a l s e t w i th t h e f i r s t e v en t
7 𝑧out ←∞ # a s s i g n non=ev en t a s t h e c a n d i d a t e o u t p u t s p i k e
8 For 𝑐 = 1, . . . , 𝐶 :

9 𝑧∗out ←
∑
𝑘∈�̃�∗ �̃�𝑘 �̃�𝑘∑

𝑘∈�̃�∗ �̃�𝑘−
𝑉thr
𝜏syn

new o u t p u t s p i k e p r o p o s a l

10 # f i n d t h e nex t i n p u t s p i k e
11 I f 𝑐 = 𝐶 :
12 𝑢←∞
13 Else :
14 𝑢← �̃�(𝑐+1)
15 End I f
16 # check t h e n e c e s s a r y and s u f f i c i e n t c o n d i t i o n s
17 I f

∑
𝑘∈�̃�∗ 𝑤𝑘 >

𝑉thr
𝜏syn

∧ �̃�𝑐 < 𝑧
∗
out < 𝑢 :

18 𝑧out ← 𝑧∗out # c u r r e n t c a n d i d a t e s r e s u l t i n a v a l i d o u t p u t s p i k e
19 Break
20 Else :
21 𝑄∗ ← {1, . . . , 𝑐} # upda t e t h e c a n d i d a t e c a u s a l s e t
22 End I f

cThe purpose of the tilde diacritic is twofold. Firstly, it makes it explicit that the quantities we compute are
in the “sorted-events domain”. To properly assign the credit to events during backpropagation it is important to
keep track of these indices. Secondly, it makes this description consistent with Sections 3.2.1.2.2-3.2.1.2.3 which
actually use both the sorted and the original event domains.

dScalars 𝑧∗out and 𝑧out are written without the tilde diacritic because their values do not depend on the ordering
of elements in z.

64 Chapter 3. Spiking Neural Networks

23 End For
24 I f 𝑧out < ∞ :
25 𝑄 ← 𝑄∗

26 Else :
27 𝑄 ← ∅ # t h e c a u s a l s e t i s empty
28 End I f
29 Return 𝑄, 𝑧out

30 End

To show how a different approach can be used in lieu of the iterative search over events,
we first note that knowing the entire input event sequence alongside the synaptic weights is
enough to determine all possible output spike times. Before showing how this information can
be leveraged to obtain the actual output spike time, let us first introduce several element-wise
operators. Denote

b = cumsum (a) (3.14)

as the cumulative sum of vector a such that

𝑏𝑖 =
∑︁
𝑗≤𝑖
𝑎 𝑗 . (3.15)

Furthermore, the Hadamard product between vectors a and b is

e = a ⊙ b , (3.16)

with elements
𝑒𝑖 = 𝑎𝑖𝑏𝑖 . (3.17)

Similarly, the Hadamard division is
f = a ⊘ b (3.18)

with elements
𝑓𝑖 =

𝑎𝑖

𝑏𝑖
. (3.19)

With these operators we can define d̃ = cumsum (w̃) − 𝑉thr
𝜏syn

and m̃ = cumsum (w̃ ⊙ z̃). Then,

g̃ = m̃ ⊘ d̃ (3.20)

represents the neuron response time in (3.5) computed for all combinations of input events (i.e.,
�̃�1 is the output spike time in response to event �̃�1; �̃�2 is the response to events �̃�1 and �̃�2, etc.).
As mentioned earlier, not all combinations of input events elicit a response, thus it is necessary
to determine which elements of g̃ represent valid responses – ones that would generate an actual
spike.

3.2. Overcoming the limitations of the model 65

Let ũ represent the time of the next input spike relative to z̃ with elements

�̃�𝑐 =

∞ if 𝑐 = 𝐶

�̃� (𝑐+1) if 𝑐 < 𝐶 ∧ �̃� (𝑐+1) > �̃�𝑐

−∞ otherwise

, (3.21)

where 𝐶 is the number of events in z. This definition captures the following scenarios:
• �̃�𝑐 = ∞ implies that �̃�𝑐 is the last event of the spike sequence (i.e., the “next event” does

not exist),
• �̃�𝑐 = −∞ means that two consecutive events �̃�𝑐, �̃� (𝑐+1) occur at the same time.

Note that ũ must contain exactly one non-event indicator. Then, the set of indices that denote
the valid elements of g̃ is

𝛺 = {𝑐 : 𝑑𝑐 > 0 ∧ �̃�𝑐 > 0 ∧ �̃�𝑐 < �̃�𝑐 < �̃�𝑐} . (3.22)

The three conditions enforce that
1) the sum of weights is larger than the scaled voltage threshold (3.7),
2) the output spike candidate has a valid domain so that the inverse transform of (3.6)

mapping 𝑧 → 𝑡 exists, and
3) the spike causality principle holds, i.e., the candidate spike �̃�𝑐 occurs later than the most

recent input spike �̃�𝑐, but earlier than the next input spike �̃�𝑐,
respectively. It follows that the smallest index in 𝛺, that is 𝑐∗ = min𝛺, can be used to obtain
the actual output spike. Therefore, the causal set is

𝑄 =

{𝑐 : 𝑐 ≤ 𝑐∗} if 𝛺 ≠ ∅

∅ otherwise
, (3.23)

and similarly 𝑧out = �̃�𝑐∗ if 𝛺 ≠ ∅ and 𝑧out = ∞ otherwise.
The interpretation of vectors z̃, w̃ and g̃ is that they fully describe the neuron input-

output relationship for all combinations of input events in z. This is similar to simultaneously
computing all neuron membrane voltage curves in Figure 3.6b for different subsets of events.
In this specific example the elements �̃�3 and �̃�4 are positive (meaning that these combinations
of events could generate a response), but ultimately 𝛺 = ∅ due to the spike causality principle.

Algorithm 3.2 summarizes the aforementioned vectorized computation. Note that comput-
ing the next spike according to (3.21) is a matter of shifting the input sequence and checking
for simultaneous events. Contrast this with the description in Algorithm 3.1. By removing the
high-level loop that iterates over events we obtained an algorithm that is easier to implement.
Additionally, as we will show in Section 3.2.1.3, the vectorized computation is about three

66 Chapter 3. Spiking Neural Networks

orders of magnitude faster than the naïve algorithm. A small drawback of this solution is that it
computes all candidate output spike responses g̃, even when it is evident that the neuron will not
generate a spike in response to the event, or when only the first few events are actually needed
to elicit such response. In such scenarios the iterative search might be preferable. While this
leaves room for further improvement, we note that according to our simulations, this algorithm
already significantly outperforms the naïve implementation (Section 3.2.1.3).

So far we have shown how the causal set search can be realized in a single pass over
an event sequence. Next, this computation must be repeated for every output neuron and
every input example pairwise combination. Sections 3.2.1.2.2-3.2.1.2.3 present one possible
approach to computing the causal set (and the output spike time) for all of these pairs in
parallel. This description utilizes third-order tensors, making it compatible with modern deep
learning framework. Furthermore, it also highlight edge-case scenarios and presents solutions
to additional challenges that arise when dealing with third-order tensors of fixed size (i.e., due
to the variable number of events in each example of the minibatch).

Algorithm 3.2: Vectorized causal set search for a single output neuron observing an event sequence.
1 Inpu t : z̃ # v e c t o r o f s o r t e d i n p u t e v e n t s o f l e n g t h 𝐶

2 Inpu t : w̃ # v e c t o r o f s y n a p t i c we i gh t s a s s o c i a t e d wi th e l emen t s i n z̃
3 Output : 𝑄 # c a u s a l neuron s e t
4 Output : 𝑧out # t r a n s f o r m e d o u t p u t s p i k e t ime
5 Begin :
6 m̃← cumsum (w̃ ⊙ z̃)
7 d̃← cumsum (w̃) − 𝑉thr

𝜏syn

8 g̃← m̃ ⊘ d̃
9 ũ← next (̃z) # a c c o r d i n g t o (3.21)

10 𝛺 ← {𝑐 : 𝑑𝑐 > 0 ∧ 𝑔𝑐 > 0 ∧ �̃�𝑐 < 𝑔𝑐 < 𝑢𝑐 }
11 I f 𝛺 = ∅ :
12 𝑄 ← ∅
13 𝑧out ←∞
14 Else :
15 𝑐∗ ← min𝛺
16 𝑄 ← {𝑐 : 𝑐 ≤ 𝑐∗}
17 𝑧out ← 𝑔𝑐∗

18 End I f
19 Return 𝑄, 𝑧out

20 End

3.2. Overcoming the limitations of the model 67

3.2.1.2 Vectorized algorithm details – computation of the output spike times for a batch
of event sequences

3.2.1.2.1 Preliminaries

A tensor is a multidimensional array. The order of a tensor denotes the number of indices
needed to address a single element of a tensor. For example,

A ∈ R𝐼1×𝐼2×𝐼3 (3.24)

is a third-order tensor in R. An 𝑛-th order tensor has 𝑛 modes. The (𝑖1, 𝑖2, 𝑖3)-th element of the
tensor A is addressed as (A)𝑖1𝑖2𝑖3 or 𝑎𝑖1𝑖2𝑖3 for indices 𝑖1 ∈ {1, . . . , 𝐼1}, 𝑖2 ∈ {1, . . . , 𝐼2} and
𝑖3 ∈ {1, . . . , 𝐼3}. Tensors are generalizations of scalars (zeroth-order tensors), vectors (first-
order tensors) and matrices (second-order tensors) to an arbitrary number of modes. Vectors
are written as boldface lowercase letters (e.g. a), matrices are boldface capital letters (e.g. A)
and tensors are Euler script capital letters (e.g. A).

Tensor fibers are one-dimensional sections of a tensor formed when all but one index are
fixed. A colon is used to indicate all elements of a mode. Similarly, a tensor slice is a
two-dimensional section with all but two indices fixed. For example, a third-order tensorA has

• column (a: 𝑗𝑘), row (a𝑖:𝑘) and tube fibers (a𝑖 𝑗:), also knows as mode-1, mode-2 and mode-3
fibers, respectively;

• horizontal (A𝑖::), lateral (A: 𝑗:) and frontal slices (A::𝑘).
Note that the notation indicates that fibers are vectors whereas slices are matrices.

In addition to the main indices denoted by its order, each tensor can have arbitrarily many
singular indices. A classical example is the row vector a ∈ R1×𝐽 and its transpose, the column
vector a𝑇 . Note that according to the established convention, row and column vectors are
denoted by boldface lowercase letters as if they were actual vectors (i.e., without the singular
index). Singular indices are redundant and need not be explicitly specified when addressing
tensors elements. For example, the matrix A ∈ R𝐽1×1×𝐽2 has elements

A =

𝑧11 𝑧12 . . . 𝑧1𝐽2

𝑧21 𝑧22 . . . 𝑧2𝐽2

...
...

. . .
...

𝑧𝐽11 𝑧𝐽12 . . . 𝑧𝐽1𝐽2

. (3.25)

For consistency, we denote third-order tensors with a singular dimension by boldface capital
letters, which is the same notation used for matrices.

Tensor matricization refers to a specific mapping of tensor’s elements such that they are
arranged in a matrix. The n-mode matricization arranges mode-𝑛 fibers as columns of a matrix.

68 Chapter 3. Spiking Neural Networks

To give a concrete example, let A ∈ Z4×3×2 be a tensor with frontal slices

A::1 =

1 2 3 4

5 6 7 8

9 10 11 12

, A::2 =

−1 −2 −3 −4

−5 −6 −7 −8

−9 −10 −11 −12

. (3.26)

Then,

A(1) =

1 2 3 4 −1 −2 −3 −4

5 6 7 8 −5 −6 −7 −8

9 10 11 12 −9 −10 −11 −12

,

A(2) =

1 5 9 −1 −5 −9

2 6 10 −2 −6 −10

3 7 11 −3 −7 −11

4 8 12 −4 −8 −12

,

A(3) =

1 5 9 2 6 10 3 7 11 4 8 12

−1 −5 −9 −2 −6 −10 −3 −7 −11 −4 −8 −12

(3.27)

are mode-1, mode-2 and mode-3 matricizations of A, respectively. The number of rows in the
resulting matrix is equal to dimensionality of the mode-n fiber. Again, the notation indicates
that the matricization result is a matrix.

The n-mode product between tensor A ∈ R𝐼1×𝐼2×···×𝐼𝑛×···×𝐼𝑁 and matrix M ∈ R𝐽×𝐼𝑛 is
defined as

B = A ×𝑛 M (3.28)

where B ∈ R𝐼1×···×𝐼𝑛−1×𝐽×𝐼𝑛+1×···×𝐼𝑁 has elements

𝑏𝑖1 · · ·𝑖𝑛−1 𝑗𝑖𝑛+1 · · ·𝑖𝑁 =

𝐼𝑛∑︁
𝑖𝑛=1

𝑎𝑖1 · · ·𝑖𝑛 · · ·𝑖𝑁𝑚 𝑗𝑖𝑛 . (3.29)

Furthermore, let 1𝐽 ∈ {1}1×𝐽 be a (row) vector of ones. Then, we can formally define n-mode
broadcasting of a tensor with a singular 𝑛-th indexA ∈ R𝐼1×···×𝐼𝑛−1×1×𝐼𝑛+1×···×𝐼𝑁 as a function

bcast𝑛 (A; 𝐽) = A ×𝑛 1𝑇𝐽 (3.30)

with the resulting elements

(bcast𝑛 (A; 𝐽))𝑖1 · · ·𝑖𝑛−1 𝑗𝑖𝑛+1 · · ·𝑖𝑁 = 𝑎𝑖1 · · ·𝑖𝑛−1𝑖𝑛+1 · · ·𝑖𝑁 . (3.31)

3.2. Overcoming the limitations of the model 69

Broadcasting repeats tensor elements 𝐽-times across what used to be the singular 𝑛-th index.
The concept of (array) broadcasting is used extensively in scientific computation and deep
learning frameworks [160]. Similarly, let us define n-mode cumulative sum as a function acting
on tensor B ∈ R𝐼1×···×𝐼𝑛×···×𝐼𝑁 such that

C = cumsum𝑛 (B) (3.32)

has elements

𝑐𝑖1 · · ·𝑖𝑛 · · ·𝑖𝑁 =

𝑖𝑛∑︁
𝑗=1

𝑏𝑖1 · · · 𝑗 · · ·𝑖𝑁 . (3.33)

Finally, let us introduce several element-wise operators. Let A ∈ R𝐼1×···×𝐼𝑁 ,
B ∈ R𝐼1×···×𝐼𝑁 , C ∈ R𝐼1×···×𝐼𝑁 and D ∈ R𝐼1×···×𝐼𝑁 be tensors with the same dimension-
ality. The Hadamard product between tensors A and B is

C = A ⊙ B , (3.34)

with elements
𝑐𝑖1 · · ·𝑖𝑁 = 𝑎𝑖1 · · ·𝑖𝑁 𝑏𝑖1 · · ·𝑖𝑁 . (3.35)

Similarly, the Hadamard division is
D = A ⊘ B (3.36)

with elements
𝑑𝑖1 · · ·𝑖𝑁 =

𝑎𝑖1 · · ·𝑖𝑁
𝑏𝑖1 · · ·𝑖𝑁

. (3.37)

3.2.1.2.2 Forward pass

Let us now describe the spiking dense layer computation, noting that the following description
is valid for any layer in the network and so to simplify the notation we avoid using a dedicated
layer index. Let Z ∈ [1,∞]𝑁×1×𝐶 be a matrix with elements

Z =

𝑧11 𝑧12 . . . 𝑧1𝐶

𝑧21 𝑧22 . . . 𝑧2𝐶
...

...
. . .

...

𝑧𝑁1 𝑧𝑁2 . . . 𝑧𝑁𝐶

(3.38)

where the index 𝑛 runs over the number of examples in a batch 𝑁 , and the index 𝑐 runs over
the number of input neurons in the layer 𝐶. The element 𝑧𝑛𝑐 represents the transformed spike
time (3.6) of the 𝑐-th neuron for the 𝑛-th input spike train. In principle, spike train sequences
selected to be a part of the same batch need not have the same number of events, however they

70 Chapter 3. Spiking Neural Networks

do need to have the same number of elements in order to construct matrix Z. To account for
that, we pad them with the non-event indicator (𝑧𝑛𝑐 = ∞) along index 𝑐. Similarly, the matrix
W ∈ R1×𝑃×𝐶 with elements

W =

𝑤11 𝑤12 . . . 𝑤1𝐶

𝑤21 𝑤22 . . . 𝑤2𝐶
...

...
. . .

...

𝑤𝑃1 𝑤𝑃2 . . . 𝑤𝑃𝐶

(3.39)

describes the synaptic weights between the 𝑐-th input neuron and the 𝑝-th output neuron.
Let S ∈ Z𝑁×1×𝐶

+ be a matrix of indices such that the mapping

Z̃ = 𝑠 (Z; S) (3.40)

reorders the elements of matrix Z according to S resulting in a matrix Z̃ with all of its elements
sorted in an ascending order along the index 𝑐. The mapping produced by (3.40) can be inverted

Z = 𝑠−1
(
Z̃; S

)
(3.41)

to produce the original matrix Z. Importantly, the function (3.40) (and its inverse) can be
applied to any matrix A that has the same dimensionality as S in order to construct a matrix Ã
with its elements reordered according to S. The inverse mapping function will be used in the
backward pass through the layer. Throughout the rest of this Section the tilde character above
matrices (tensors) denotes the aforementioned sorting index reference.

Additionally, let Ũ ∈ ({−∞} ∪ [1,∞])𝑁×1×𝐶 be a matrix denoting the time of the next
input spike relative to Z̃ with elements

�̃�𝑛𝑐 =

∞ if 𝑐 = 𝐶 ∧ �̃�𝑛𝑐 < ∞

�̃�𝑛(𝑐+1) if 𝑐 < 𝐶 ∧ �̃�𝑛(𝑐+1) > �̃�𝑛𝑐

−∞ otherwise

. (3.42)

This definition captures the following scenarios:
• �̃�𝑛𝑐 = ∞ implies that �̃�𝑛𝑐 is the last element of the spike sequence,
• �̃�𝑛𝑐 = −∞ means that two consecutive events �̃�𝑛𝑐, �̃�𝑛(𝑐+1) occur at the same time, or that

both of them are non-event indicators (̃𝑧𝑛𝑐 = ∞). The latter notion is also valid for 𝑐 = 𝐶,
in which case �̃�𝑛(𝐶+1) = ∞ is implied.

Note that each row of Ũ must contain exactly one non-event indicator, unless the corresponding
“sequence” is completely empty.

According to the naïve version of the algorithm, we need to pair each input event {𝑧𝑛𝑐} with
a set of synaptic weights {𝑤𝑝𝑐} connected to that input neuron. To do so, recall that matrices

3.2. Overcoming the limitations of the model 71

Z ∈ [1,∞]𝑁×1×𝐶 and W ∈ R1×𝑃×𝐶 have singular indices. We can apply broadcasting to
produce third-order tensors Z ∈ [1,∞]𝑁×𝑃×𝐶 and W ∈ R𝑁×𝑃×𝐶 such that

Z = bcast2 (Z; 𝑃) (3.43)

and
W = bcast1 (W; 𝑁) . (3.44)

Repeating elements across the singular dimensions has a fairly straightforward interpretation.
For tensor Z the spike train sequence observed by input neurons is obviously the same,
regardless of the choice of the output neuron 𝑝. Similarly for tensorW – the synaptic weights
do not depend on the input example 𝑛. For completeness, we can broadcast the matrix S to

S = bcast2 (S; 𝑃) (3.45)

such that the mapping
Z̃ = 𝑠 (Z;S) (3.46)

reorders that elements ofZ so that they are sorted along index 𝑐, and that the inverse mapping

Z = 𝑠−1
(
Z̃;S

)
(3.47)

exists. Finally, denote
Ũ = bcast2

(
Ũ; 𝑃

)
. (3.48)

Having computed the sorted spike-times tensor Z̃ and the weights tensor projected accord-
ing to the sorting indices W̃, the next step is to find all possible candidates for the output spikes,
which for a single output neuron is given in an implicit form (3.5) conditioned on the causal
set 𝑄. First, let us denote the cumulative sum of W̃ along the index 𝑐 as tensor L̃ ∈ R𝑁×𝑃×𝐶

L̃ = cumsum3

(
W̃

)
(3.49)

with elements ℓ̃𝑛𝑝𝑐. Similarly, the membrane current tensor M̃ ∈ R𝑁×𝑃×𝐶 represents the
cumulative sum along index 𝑐 of the Hadamard product W̃ ⊙ Z̃ . Let us explicitly define the
elements of M̃ as

𝑚𝑛𝑝𝑐 =

∑𝑐
𝑖=1 𝑤𝑛𝑝𝑖 �̃�𝑛𝑝𝑖 if �̃�𝑛𝑝𝑐 < ∞

sgn
(
ℓ̃𝑛𝑝𝑐

)
· ∞ otherwise

, (3.50)

where sgn (𝑥) is the signum function. The second case is a heuristic that prevents obtaining
an undefined result (∞ − ∞) in the cumulative sum when �̃�𝑛𝑝𝑐 = ∞. Then, the output spike
candidate denominator tensor D̃ ∈ R𝑁×𝑃×𝐶 is

D̃ = L̃ − 𝑉thr
𝜏syn

, (3.51)

72 Chapter 3. Spiking Neural Networks

whereas the spike candidate tensor G̃ ∈ R𝑁×𝑃×𝐶 is constructed as

G̃ = M̃ ⊘ D̃ . (3.52)

The next step aims to determine which elements of the candidate output events tensor G̃
are valid, i.e., find all input spike combinations that could results in an output spike generation.
The set of index triplets {𝑛, 𝑝, 𝑐} that denote the valid elements of G̃ is

𝛺 = {𝑛, 𝑝, 𝑐 : 𝑑𝑛𝑝𝑐 > 0 ∧ �̃�𝑛𝑝𝑐 > 0 ∧ �̃�𝑛𝑝𝑐 < �̃�𝑛𝑝𝑐 < �̃�𝑛𝑝𝑐} . (3.53)

The three conditions enforce that
1) the sum of weights is larger than the scaled voltage threshold (3.7),
2) the output spike candidate has a valid domain so that the inverse transform of (3.6)

mapping 𝑧 → 𝑡 exists, and
3) the spike causality principle holds, i.e., the candidate spike �̃�𝑛𝑝𝑐 occurs later than the

most recent input spike �̃�𝑛𝑝𝑐, but earlier than the next input spike �̃�𝑛𝑝𝑐,
respectively. The set of valid indices 𝛺 is analogous to the causal set 𝑄 from (3.4).

Note that neither 𝛺 nor𝑄 say anything about the earliest valid spike candidate (although in
the naïve implementation this is an implicit result of the for-loop operation). To determine the
earliest possible output spike, we first construct a matrix Q̃ ∈ Z𝑁×𝑃×1

0+ with elements

𝑞𝑛𝑝 =

0 if {𝑘 : {𝑛, 𝑝, 𝑘} ⊂ 𝛺} = ∅

min{𝑘 : {𝑛, 𝑝, 𝑘} ⊂ 𝛺} otherwise
. (3.54)

The matrix Q̃ can be thought of as an indicator of the actual (generated) output spike according
to all possible valid input spike combinations, which is why it is a matrix and not a third-order
tensor. Then, the output spike matrix Zout ∈ [1,∞]𝑁×𝑃×1 has elements

𝑧out𝑛𝑝
=

�̃�𝑛𝑝𝑘 where 𝑘 = 𝑞𝑛𝑝 if 𝑞𝑛𝑝 > 0

∞ otherwise
. (3.55)

This step concludes the forward pass through the layer. Note that Zout need not be described in
terms of the sorting index reference S because the index corresponding to the input dimension
is singular.

The algorithm is summarized in Figure 3.7a, which additionally shows that some of the
computed values can be reused in the backward pass. In contrast to the flowchart for the naïve
algorithm presented in Figure 3.6a, there are no loops, which significantly reduces processing
time.

3.2. Overcoming the limitations of the model 73

Tr
an

sf
or

m
ed

 b
at

ch
of

 in
pu

t s
pi

ke
s

Tr
an

sf
or

m
ed

 b
at

ch
of

 o
ut

pu
t s

pi
ke

s

La
ye

r
w

ei
gh

ts

+

-

Co
ns

tr
uc

t a
 s

ca
lin

g
fa

ct
or

 te
ns

or
H

ad
am

ar
d

pr
od

uc
t

H
ad

am
ar

d
pr

od
uc

t

Su
m

Ap
pl

y
th

e
in

ve
rs

e
m

ap
pi

ng
fu

nc
tio

n

Ap
pl

y
th

e
in

ve
rs

e
m

ap
pi

ng
fu

nc
tio

n

H
ad

am
ar

d
pr

od
uc

t

H
ad

am
ar

d
pr

od
uc

t

Su
m

 o
ve

r
la

te
ra

l s
lic

es

Su
m

 o
ve

r
ho

riz
on

ta
l s

lic
es

So
rt

 in
pu

t s
pi

ke
s

in
as

ce
nd

in
g

or
de

r
al

on
g

th
e

in
de

x

D
et

er
m

in
e

el
em

en
t-

w
is

e
tim

e
of

 n
ex

t s
pi

ke

Ap
pl

y
th

e
m

ap
pi

ng
fu

nc
tio

n

H
ad

am
ar

d
pr

od
uc

t

Su
bt

ra
ct

H
ad

am
ar

d
di

vi
si

on

Fi
nd

 th
e

se
t o

f
va

lid
 in

pu
t

co
m

bi
na

tio
ns

Fi
nd

 th
e

co
m

bi
na

tio
n

th
at

 re
su

lts
 in

 th
e

ea
rli

es
t o

ut
pu

t s
pi

ke

G
et

 th
e

ou
tp

ut
sp

ik
e

tim
es

Fi
gu

re
3.

7:
Ve

ct
or

iz
ed

si
gn

al
pr

op
ag

at
io

n
th

ro
ug

h
th

e
sp

ik
in

g
de

ns
e

la
ye

r.
D

as
he

d
ar

ro
w

sp
oi

nt
in

g
to

w
ar

ds
op

er
at

or
bl

oc
ks

de
no

te
in

fo
rm

at
io

n
th

at
ch

an
ge

st
he

ou
tp

ut
el

em
en

t-w
is

e
or

in
flu

en
ce

st
he

or
de

ro
fe

le
m

en
ts

.T
op

:f
or

w
ar

d
pa

ss
.B

ot
to

m
:b

ac
kw

ar
d

pa
ss

.

74 Chapter 3. Spiking Neural Networks

3.2.1.2.3 Backward pass

The purpose of the backward pass through the layer is to compute gradient of the loss function 𝐿
(such as the cross-entropy loss (3.10)) with respect to the layer weights W and the input signal
Z. The former is used to update the weights prior to the next optimization step, whereas the
latter flows to the preceding layer. With a slight abuse of notation, let 𝜕𝐿

𝜕Zout
∈ R𝑁×𝑃×1 be a

matrix with elements

𝜕𝐿

𝜕Zout
=

𝜕𝐿
𝜕𝑧out11

𝜕𝐿
𝜕𝑧out12

. . . 𝜕𝐿
𝜕𝑧out1𝑃

𝜕𝐿
𝜕𝑧out21

𝜕𝐿
𝜕𝑧out22

. . . 𝜕𝐿
𝜕𝑧out2𝑃

...
...

. . .
...

𝜕𝐿
𝜕𝑧out𝑁1

𝜕𝐿
𝜕𝑧out𝑁2

. . . 𝜕𝐿
𝜕𝑧out𝑁𝑃

. (3.56)

This is the signal that flows into the backward pass from the next layer. We wish to compute
the partial derivatives 𝜕𝐿

𝜕Z ∈ R
𝑁×1×𝐶 and 𝜕𝐿

𝜕W ∈ R
1×𝑃×𝐶 . From the chain rule of derivatives we

have
𝜕𝐿

𝜕Z
=

𝑃∑︁
𝑝=1

(
𝜕𝐿

𝜕Zout
⊙ 𝜕Zout

𝜕Z

)
:𝑝:

𝜕𝐿

𝜕W
=

𝑁∑︁
𝑛=1

(
𝜕𝐿

𝜕Zout
⊙ 𝜕Zout
𝜕W

)
𝑛::

. (3.57)

This shows that the partial derivatives can be computed from third-order tensors by summing
them across the appropriate slices. The partial derivative 𝜕𝐿

𝜕Zout
∈ R𝑁×𝑃×𝐶 can be obtained by

broadcasting the backward pass input signal (3.56)

𝜕𝐿

𝜕Zout
= bcast3

(
𝜕𝐿

𝜕Zout
;𝐶

)
. (3.58)

All that is left to do is compute 𝜕Zout
𝜕Z ∈ R

𝑁×𝑃×𝐶 and 𝜕Zout
𝜕W ∈ R𝑁×𝑃×𝐶 .

Recall from the partial derivatives formulae derived for a single IF neuron (3.8)-(3.9) that
they are both set to zero for neurons which were not a part of the causal set used to produce the
output spike in the forward pass. Additionally, both equations share a common denominator
term, which is also present in (3.5). This means that some of the results obtained during the
forward pass computation described in Section 3.2.1.2.2 can be reused. Therefore, let us first
introduce the scaling factor tensor B̃ ∈ R𝑁×𝑃×𝐶 which can be constructed from the spike
candidate denominator tensor D̃ (3.51) according to the elements of the output spike indicator
matrix Q̃ (3.54)

�̃�𝑛𝑝𝑐 =

(
𝑑𝑛𝑝𝑘

)−1
where 𝑘 = 𝑞𝑛𝑝 if 𝑐 ≤ 𝑘 ∧ 𝑞𝑛𝑝 > 0

0 otherwise
. (3.59)

3.2. Overcoming the limitations of the model 75

Note that the element
(
𝑑𝑛𝑝𝑘

)−1
which satisfies the aforementioned condition is guaranteed

to be positive (3.7). Furthermore, this condition ensures that all nonzero elements of B̃ are
associated with a combination of inputs that are a part of a causal set.

In order to compute the partial derivatives with respect to input spikes and synaptic weights
we first need to ensure that Zout is of the same dimensionality as tensors B̃, Z̃ and W̃.
Therefore, we broadcast the matrix to produce a tensor Z̃out ∈ R𝑁×𝑃×𝐶

Z̃out = bcast3 (Zout;𝐶) . (3.60)

Note that Zout ≜ Z̃out. Then, the partial derivative of Z̃out with respect to S-sorted input
neurons

𝜕Z̃out

𝜕Z̃
= B̃ ⊙ W̃ , (3.61)

whereas the partial derivative of Z̃out with respect to S-sorted weights is

𝜕Z̃out

𝜕W̃
=

B̃ ⊙

(
Z̃ − Z̃out

)
if �̃�𝑛𝑝𝑐 > 0

0 otherwise
. (3.62)

This system of equations is designed to prevent undefined elements which might occur when

�̃�𝑛𝑝𝑐 = 0 ∧
(
�̃�𝑛𝑝𝑐 = ±∞ ∨ �̃�out𝑛𝑝𝑐

= ±∞
)

or
�̃�𝑛𝑝𝑐 = ±∞ ∧ �̃�out𝑛𝑝𝑐

= ±∞ .

Then, the sought-after partial derivatives 𝜕Zout
𝜕Z and 𝜕Zout

𝜕W can be obtained by applying the inverse
mapping function (3.47)

𝜕Zout
𝜕Z = 𝑠−1

(
𝜕Z̃out

𝜕Z̃
;S

)
𝜕Zout
𝜕W = 𝑠−1

(
𝜕Z̃out

𝜕W̃
;S

) . (3.63)

Plugging (3.58) and (3.63) into (3.57) concludes the backward pass. The algorithm for the
backward pass is summarized in Figure 3.7b.

3.2.1.3 Comparison with the naïve algorithm

In order to assess the feasibility of training networks with the vectorized algorithm introduced
in the previous sections, its time-performance was compared with the naïve version. Both of
them were implemented in the TensorFlow [158] deep learning framework.

Simulation 5. The evaluation protocol can be summarized as follows:

76 Chapter 3. Spiking Neural Networks

1) For every combination of values of the {input_shape}, {output shape} and {batch size}:
a) For every value of the {random_seed}:

i. Construct the naïve and vectorized layers with {input_shape} input neurons
and {output_shape} output neurons, with weights sampled according to the
{random_seed}.

ii. For every {sample_index}:
A. Construct {batch_size} examples by sampling a spike 𝑥 ∼ U (0, 5) for

every input neuron according to the {random_seed}.

B. For both layer types: measure the time it takes to process sampled examples
in the forward and backward pass, averaged over {num_reps} repetitions.

It must be stressed that in the aforementioned algorithm evaluation protocol each input neuron
is associated with a single spike. This means that the naïve implementation cannot take
advantage of early stopping of the innermost for-loop when no more spikes occur. Conversely,
the vectorized implementation is, in general, unable to distinguish between inputs with and
without spikes.e Therefore, for a more fair comparison between the two implementations, input
signal sparsity was not considered in the analysis. Furthermore, the evaluation protocol has
no optimization objective and each set of examples is passed through the layer {num_reps}
times without updating the weights. Thus, backpropagation computation time comparison is
not included in this analysis.

The set of parameters used to compare the vectorized and naïve algorithms is summarized
in Table 3.2. The values of the {input_shape}, {output_shape} and {batch_size} were chosen
on a log2-scale in order to capture the range of values typically used to train nonspiking dense
networks. Repeating the simulations with a different random seed used to sample the set of
weights averages the results over different initial states of the network, which might differ in
how easy it is to propagate the signal through the layer. Repeated sampling of input examples
further averages the results over different signals observed by the layer, although, given that
all input neurons produce a spike, this primarily has an effect on the spike-sorting component
of the algorithm. All simulations were conducted on the same device which was otherwise
idle (i.e., no other CPU-intensive tasks were underway) and so repeating each run {num_reps}
times should, in principle, mitigate the effect of hardware task-scheduling & prioritization on
the results.

First, let us present the results on how the two algorithms scale with the overall number of
neurons in the network and the number of examples passed as their input. Figure 3.8 presents
those results as contour lines of the processing time surfaces in the log2-log10 space. The

eSeveral special cases for which the level of computation can be reduced are discussed in Section 3.2.4.

3.2. Overcoming the limitations of the model 77

Table 3.2: An overview of the parameters used in the algorithm evaluation protocol.

Parameter Range of values or a number of
input_shape

2, 4, 8, 16, 32, 64, 128, 256
output_shape
batch_size 4, 8, 16, 32, 64, 128
random_seed (no.)

10sample_index (no.)
num_reps (no.)

2 4 6 8
log2(output neurons)

−2

0

2

lo
g 1

0(
pr

oc
es

sin
g

tim
e)

a) log2(batch size) = 2

2 4 6 8
log2(output neurons)

−2

0

2

lo
g 1

0(
pr

oc
es

sin
g

tim
e)

b) log2(batch size) = 3

2 4 6 8
log2(output neurons)

−2

0

2

lo
g 1

0(
pr

oc
es

sin
g

tim
e)

c) log2(batch size) = 4

2 4 6 8
log2(output neurons)

−2

0

2

lo
g 1

0(
pr

oc
es

sin
g

tim
e)

d) log2(batch size) = 5

2 4 6 8
log2(output neurons)

−2

0

2

lo
g 1

0(
pr

oc
es

sin
g

tim
e)

e) log2(batch size) = 6

2 4 6 8
log2(output neurons)

−2

0

2

lo
g 1

0(
pr

oc
es

sin
g

tim
e)

f) log2(batch size) = 7

Figure 3.8: Contour lines of the processing time surfaces in the log2-log10 space for the naïve (in blue)
and vectorized (in orange) spiking layer implementations. The results were obtained by varying the
batch size and the number of input and output neurons according to the algorithm evaluation protocol in
Table 3.2. The number on each curve corresponds to log2 (input neurons). The processing time prior to
the log-transform is expressed in seconds.

78 Chapter 3. Spiking Neural Networks

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
log2(problem dimensionality)

1.0

1.5

2.0

2.5

3.0
lo
g 1

0(
sp

ee
du

p)

Figure 3.9: Violin plot of the average speedup of the processing time by the vectorized implementation
over the naïve approach at different values of the problem dimensionality.

log2 component naturally corresponds to the range of values chosen in the evaluation protocol
(Table 3.2), whereas the log10 component allows us to display the results at different processing
time scales. For the naïve implementation we observe that the surfaces described by the contour
lines are approximately flat, with the processing time gradually increasing with the number of
input and output neurons. Furthermore, surfaces obtained at different batch sizes are roughly
parallel to one another. This finding is in line with what one might expect from an algorithm
composed of three nested for-loops. The result also shows that when both the batch size and
the number of neurons is large (although in the broader context of nonspiking neural networks
this number of neurons is still relatively small), then this layer takes hundreds of seconds to
process a batch of examples. This makes the naïve implementation impractical for training
spiking neural networks of even a moderate size. By contrast, the surfaces for the vectorized
implementation show some interesting properties:

1) At sufficiently small batch sizes and number of neurons the processing time is approx-
imately constant (at this resolution). This might be explained by the input spike-sorting
component of the algorithm having the biggest impact on the processing time in this
region.

2) The surfaces become concave and approximately parallel to one another when the number
of neurons and batch sizes are both large enough. In this region the overall complexity
of the spike-search algorithm dominates, as was the case for all surfaces observed for the
naïve implementation.

Note that the vectorized implementation takes significantly less time to process any single batch
of examples, regardless of the number of input and output neurons.

It might be interesting to assess how much faster is the proposed algorithm than the baseline

3.2. Overcoming the limitations of the model 79

at different points of the evaluation protocol grid. To do that, we first introduce the problem
dimensionality, defined as dim = 𝑁 · 𝑃 · 𝐶, as the overall number of elements that contribute
to the computation through a spiking layer. We aggregate all results obtained for the same
value of the problem dimensionality, and then compute a ratio of the processing time for the
naïve approach to the vectorized implementation (i.e., speedup), for all results. This analysis
is summarized as a violin plot in Figure 3.9. It shows that the vectorized implementation is
faster than the naïve version for the entirety of the problem dimensionality grid. Furthermore,
at sufficiently large values of the batch size and the number of neurons in the layer, the proposed
approach is consistently three orders of magnitude faster than the baseline. This makes it
feasible to train the spiking neural network and is a foundation on which all experimental work
described in subsequent Sections of this thesis builds upon.

3.2.2 Numerical instability resulting from absolute time event representation

An interesting property of the discussed model is that it has no notion of absolute time. As
shown in the XOR task (Figure 3.4), shifting both input spikes in time by a constant 𝑡𝛿 also
shifts the model response by the same value. This includes not only spikes generated by the
model, but also the integrated membrane voltage, for all neurons in the model. In fact, this
property can be trivially derived by shifting all input spike times {𝑡𝑐} by a constant 𝑡𝛿

𝑡 𝛿𝑐 = 𝑡𝑐 + 𝑡𝛿 =⇒ 𝑧𝛿𝑐 = exp
(
𝑡𝑐 + 𝑡𝛿
𝜏syn

)
= 𝑧𝑐𝑧𝛿 , (3.64)

which when plugged into (3.5) results in

𝑧𝛿out =

∑
𝑐∈𝑄 𝑤𝑐 (𝑧𝑐𝑧𝛿)∑
𝑐∈𝑄 𝑤𝑐 − 𝑉thr

𝜏syn

= 𝑧out𝑧𝛿 =⇒ 𝑡 𝛿out = 𝑡out + 𝑡𝛿 , (3.65)

with a caveat that ∀𝑐 𝑡 𝛿𝑐 ≥ 0. It must be noted however, that the aforementioned absolute-time
invariance is only applicable during model inference on a dedicated hardware. In practice
the model is simulated using a programming language of choice, therefore there exists an
upper limit to the applied shift 𝑡𝛿 before encountering the limits of floating-point data format.
Additionally, the presence of the scaling factor 𝑧𝛿 in (3.65) means that 𝜕𝑧

𝛿
out

𝜕𝑤𝑐
= 𝑧𝛿

𝜕𝑧out
𝜕𝑤𝑐

(note
that 𝜕𝑧out

𝜕𝑧𝑐
in (3.8) is invariant to the applied time shift). This implies that the model is not time

invariant during training as the final set of trained weights will be different.
Overall, this suggests that not accounting for the magnitude of absolute time reference has

an adverse effect on the training procedure, and might ultimately lead to a failed model. For
instance, recall the simple XOR-SNN introduced in Section 3.1.4.1. Figure 3.10 (top) shows
that when the model is trained with progressively larger values of 𝑡𝛿 , its convergence to a
stable solution becomes less likely. Note that the numerical instability emerges at relatively

80 Chapter 3. Spiking Neural Networks

10−5

10−2

101

SG
D

Op
tim

ize
r

0 200 400 600 800 1000
Epoch

10−5

10−2

101

RM
Sp

ro
p

Op
tim

ize
r

tδ = 0 tδ = 2τsyn tδ = 4τsyn tδ = 6τsyn

Lo
ss

Figure 3.10: Training loss curves of the XOR-SNN model for different values of time-shift 𝑡𝛿 applied to
input spikes. Top: model trained using the SGD optimization algorithm. Bottom: model trained using
the RMSprop optimization algorithm.

small shifts, making the model impractical for analyzing real data. We found that substituting
the SGD optimization algorithm with the RMSprop [161], which focuses on the sign of the
gradient instead of its magnitude, helps with convergence, as shown in Figure 3.10 (bottom).
Nevertheless, changing the optimization algorithm has an impact only on the learned set of
weights and does nothing to help with the magnitude of transformed spikes {𝑧𝑐} becoming too
large.

Importantly, in practical applications the input spike sequences are unlikely to all be shifted
by the same 𝑡𝛿 , or occur at similar timescales. An example of the latter scenario is the Twitter
dataset analyzed in Section 2.5 with sequences composed of events ranging from minutes to
weeks since the time reference. It follows that mitigating the absolute time reference problem
requires taking into account both of these effects.

Recall from (3.64) and (3.65) that the time shift constant 𝑡𝛿 manifests in the layer’s forward-
backward computation as a scaling factor. This means that the spike sequence can be shifted in
time so that the first spike observed by the layer is at a relative time 𝑡 = 0 (or equivalently 𝑧 = 1)
without meaningfully changing the algorithm that finds the output spike time 𝑡out (𝑧out). The
actual time of the layer output spikes can be obtained by shifting them all in time by the same
constant. We shall denote an SNN model as time-aligned if all layers of the network observe
events starting at relative time 𝑡 = 0. The computation through a time-aligned model is different
during training and inference:

• When training the model the information about the absolute time reference is – in general
– optional, and so layer outputs are not shifted forward in time. This stems from the
fact that during training the ordering of spikes relative to each other and the first input

3.2. Overcoming the limitations of the model 81

spike is important, not their absolute time. Importantly, if the chosen loss function is not
time-invariant (as is the case for the modified cross-entropy loss (3.10)), then its inputs
must also be time-aligned. In the backward pass through the model, the derivatives are
not scaled by the computed layer time-shifts. This ensures that training the time-aligned
SNN results in the same set of layer weights, regardless of the initial time-shift applied
to the input signal. Figure 3.11a summarizes signal propagation through a multilayer
time-aligned SNN.

• During inference we want to preserve the absolute time reference. Therefore, all spikes
are shifted before and after the layer computation. This approach is summarized in
Figure 3.11b. An alternative approach would be to process the signal as one would do
in the training-mode (i.e., shift only to 𝑡 = 0 without a forward-shift of the resulting
output spikes), accumulate the time-shifts across all layers, and restore the absolute time
reference only after obtaining the output spikes of the entire model.

Overall, a time-aligned model is time-shift invariant in both training- and inference-time at a
negligible computation cost. Note that the computed 𝑗-th layer time-shift 𝑡 [𝑗]

𝛿
must be finite. If

the layer observes no spikes, then 𝑡 [𝑗]
𝛿

≜ 0.
Figure 3.11c presents a comparison between loss curves obtained by training a XOR-SNN

model with and without time-alignment versus the time-shift 𝑡𝛿 applied to input spikes. Note
that the loss curves for all time-aligned models are identical to one another, meaning that the
proposed approach makes the model time-invariant during training. There are three factors
that contribute to the observed difference between XOR-SNN and time-aligned XOR-SNN
for 𝑡𝛿 = 0. First of all, the time-aligned model shifts spikes that are used in the loss function
computation, and so the two models have different losses after only a few iterations. Secondly,
the backward pass of the time-aligned SNN ignores the scaling factors induced by layer time-
shifts, which has a major impact on the computed partial derivatives. Lastly, recall from
Section 3.1.4.1 that the XOR-SNN model is trained with four examples in total, two of which
are identical to each other in all but the absolute spike time. Time-aligned SNN removes this
input signal time-shift, which reduces the effective number of examples from four to three,
making the training dataset no longer class-balanced and more difficult to learn from. This
explains why such a simple model converges quite late in the training process.

In order to mitigate the issues with training the model on data occurring at different
timescales, we propose to substitute the spike transform function 𝑧(𝑡) (3.6) with 𝑧(𝑔(𝑡)), where
the function 𝑔(𝑡) is

• monotonically increasing, so that the relative order of events is preserved, and
• bijective on R+0 , so that there exists an inverse mapping from 𝑧 to 𝑡 via 𝑔−1(𝑡).

For practical reasons discussed throughout this Section, we additionally require ∀𝑡>0 𝑔(𝑡) ≤ 𝑡.

82 Chapter 3. Spiking Neural Networks

a)

Transformed
input spikes

Loss

Partial
derivatives

b)

Spiking
Dense
Layer

Find the
first spike

Transformed
input spikes Divide Multiply

Transformed
output spikes

Loss
function

backward
pass

Spiking
Dense Layer

backward
pass

Partial
derivatives

Spiking
Dense
Layer

Find the
first spike

Divide

Find the
first spike

Divide Loss
function

10−3

10−1

101

t δ
=

0

c)

10−3

10−1

101

t δ
=

4τ
sy

n

0 250 500 750 1000
Epoch

10−3

10−1

101

t δ
=

2τ
sy

n

0 250 500 750 1000
Epoch

10−3

10−1

101

t δ
=

6τ
sy

n

XOR-SNN Time-aligned XOR-SNN

Lo
ss

Figure 3.11: a) Flowchart of the signal propagation through a multilayer time-aligned SNN during
training. The index 𝑗 ∈ {1, . . . , 𝐽} denotes different layers of the network. Dotted lines denote
information that is passed as next layer input. b) Flowchart of the signal propagation through a multilayer
time-aligned SNN during inference. c) Loss curves for XOR-SNN models trained with and without time-
alignment versus time-shift 𝑡𝛿 applied to the input spikes. All models were trained with the same set of
hyperparameters.

3.2. Overcoming the limitations of the model 83

a)

0 1 10 100 1000
0.0

0.5

1.0
Ou

tp
ut

0 1 10 100 1000
0.0

0.5

1.0

Hi
dd

en

Time [τsyn]

b)

0 1 10 100 1000
0.0

0.5

1.0

Ou
tp

ut

0 1 10 100 1000
0.0

0.5

1.0

Hi
dd

en

Time [τsyn]

Figure 3.12: Selected spike-voltage plots of a XOR-SNN network responding to examples spiking at
a) {𝑡0, 𝑡1} and b) {𝑡1, 𝑡1}, for a model that uses time log-transform with 𝑏 = 10.

An example of a simple function that satisfies these conditions is

𝑔(𝑡) = log𝑏 (𝑡 + 1) , 𝑏 > 1 . (3.66)

Note that this function is applied not only to the input spikes, but also to all time-related constants
of the model (for the IF neuron that means 𝜏syn and 𝜏ref). An important consequence of applying
the log-transform approach to the input data is that it significantly lengthens the model response
time, subject to the choice of the logarithm base 𝑏 and model parameters 𝑉thr and 𝜏syn. This is
because the transform 𝑔(𝑡) becomes a part of the model and must be applied at both training-
and inference-time. For example, Figure 3.12 presents two spike-voltage plots of a XOR-SNN
model trained on examples with events occurring at either 𝑡0 = 0 or 𝑡1 = 100 𝜏syn for 𝑏 = 10.
With both inputs spiking at 𝑡 = 𝑡1 the model produces its last spike at about 𝑡 = 1100 𝜏syn,
despite its inputs spiking much earlier.f Even though such model is able to converge to a
solution whereas an unmodified SNN fails, it can be argued that this approach is impractical
when low-latency responses are required of the model. Conversely, if processing the signal and
computing a model prediction is all that is important (as is the case when applying the model to
the Twitter bot classification problem in Section 3.3), then this seems to be a valid approach. It
might be interesting to explore different approaches that mitigate the outlined problem of long
model response time, such as introducing a new penalty term to the minimized loss function.

In conclusion, the problems and solutions discussed so far are merely workarounds to what
seems to be a fundamental flaw of the model. Perhaps a different approach is needed, one that
reformulates all learning rules in terms of interspike intervals (ISI) instead of absolute spike-
times. Even then, those issues might still arise when events are sufficiently rare, causing ISIs

fWhether that spike is even necessary to solve the XOR problem is a topic of the discussion in the next Section.

84 Chapter 3. Spiking Neural Networks

101 102 103

Number of training iterations

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ai
ni

ng
 m

et
ric

 v
al

ue

Cross-entropy loss
Spike-firing regularization

F1-score
Network spike activity

Figure 3.13: Training curves of a classification SNN model trained on MNIST data. Each loss function
component (cross-entropy loss, spike-firing regularization) is paired with a score (F1-score and network
spike activity, respectively). The network spike activity score represents the number of neurons eliciting
a spike relative to the number of neurons in the network. The loss components were min-max normalized.

to become too large. One could consider adaptively rescaling the layer inputs in order to keep
them reasonably small, similarly to the batch normalization layer [162] in ANNs. While there
exists a spiking equivalent to the batch normalization layer for the rate-coding SNN [112], it
cannot be used in the time-coding setting of the discussed model. Overall, this seems to be an
interesting topic to explore in the future.

3.2.3 Relaxing the neuron firing constraint

Minimizing the spike-firing penalty (3.11), which promotes the SNN activity, is crucial for
the model to function properly. A randomly initialized set of layer weights more often than
not prevents the model from propagating the signal through the spiking layers. Recall the
SNN model trained on the MNIST digit classification task from Section 3.1.4.2. Figure 3.13
illustrates the training curves of this model. Note that the spike-firing penalty is extremely
important during the initial training iterations, with its relative importance diminishing as
training progresses. Only after the model is able to produce spikes at its output does the task-
specific loss function component begin to play any role in the training process. Additionally,
observe that the network activity score continues to increase alongside the F1-score.

Recall from the reproducibility study in Section 3.1.4.2 that, in general, a significant number
of hidden layer neurons generate a spike much later than in takes for the model to produce its
first output spike. This implies that either these neurons inhibit the activity of subsequent layers,
helping the model make a correct prediction in the process, or that they have no impact on the

3.2. Overcoming the limitations of the model 85

final decision. The latter scenario is energy-inefficient, but stems from the definition of the
spike-firing penalty, which is applied to every neuron as long as it does not produce a spike.
It can be argued that it is unnecessary to promote spiking activity when the model correctly
solves the task at hand. We posit that the penalty term should be applied only when “the task
is not solved”. For classification models this entails that the output of the network is different
from the expected ground truth. Such approach would result in models that are more efficient
in terms of the number of spikes needed to propagate the signal through the network, compared
to the original approach (which makes all neurons in the network produce at least one spike).
The proposed heuristic is thus

𝑅∗spiking =
1∑𝑁

𝑛=1 1 (𝑦𝑛 ≠ �̂�𝑛)

𝑁∑︁
𝑛=1

1 (𝑦𝑛 ≠ �̂�𝑛) 𝑅 [𝑛]spiking , (3.67)

where 𝑛 runs over all examples within a training minibatch 𝑁; 𝑅 [𝑛]spiking is the spike-firing penalty
term in (3.11) computed only for the 𝑛-th example, and 1 (𝐴) is an indicator function. The
argument of the indicator function is a short-hand notation for the output of the network �̂�𝑛
being different from the expected ground truth 𝑦𝑛. The proposed heuristic (3.67) dynamically
scales the spike-firing penalty term during training – it acts as a mean penalty over the mini-
batch examples if the network returns an incorrect output for all examples, and it assigns an
increasingly larger weight to each incorrectly predicted example as the training progresses. For
completeness

𝑅∗spiking = 0 if ∀
𝑛∈{1,...,𝑁 }

1 (𝑦𝑛 ≠ �̂�𝑛) = 0 .

Note that having the correct network output does not necessarily mean that the task-specific
loss term (e.g. cross-entropy loss (3.10)) for a given example is zero.

Figure 3.14 shows that applying this modified spike-firing penalty term to the XOR-SNN
model produces a network that uses fewer spikes to achieve the desired logic. The neurons that
do not fire in response to an input signal are called quiescent neurons. This is possible due to
an implicit assumption that quiescent neurons produce a spike at 𝑡out = ∞. In fact, Figure 3.14
shows that an SNN trained with this modified penalty term can have both completely quiescent
(in green), as well as conditionally quiescent neurons (in gray).

The average number of spikes needed to process a signal by the model, compared to the
actual number of neurons in the network, can be quantified. Let us formally define a group of
quiescent neurons not firing in response to a given input signal 𝑥(𝑡) as

𝐻𝑞,𝑥 = {ℎ ∈ 𝐻, 𝑡 > 0 : 𝑉ℎ,𝑥 (𝑡) < 𝑉𝑡ℎ𝑟 } . (3.68)

Then, the network sparsity index QN𝑥 is a fraction of quiescent neurons 𝐻𝑞,𝑥 to all neurons in

86 Chapter 3. Spiking Neural Networks

a)

0 2 4

0.0

0.5

1.0

Ou
tp

ut

0 2 4
0.0

0.5

1.0

Hi
dd

en

Time [τsyn]

b)

0 2 4

0.0

0.5

1.0

Ou
tp

ut
0 2 4

0.0

0.5

1.0

Hi
dd

en

Time [τsyn]

c)

0 2 4

0.0

0.5

1.0

Ou
tp

ut

0 2 4
0.0

0.5

1.0

Hi
dd

en

Time [τsyn]

d)

0 2 4

0.0

0.5

1.0

Ou
tp

ut

0 2 4
0.0

0.5

1.0

Hi
dd

en

Time [τsyn]

Figure 3.14: Spike-voltage plots of a time-to-first-spike SNN trained on the spiking XOR task with the
modified spike-firing penalty term. a) 0 XOR 0 = 0, b) 1 XOR 1 = 0, c) 0 XOR 1 = 1, d) 1 XOR 0 = 1.
Note that the gray curve in scenarios (a) and (b) does not cross the threshold 𝑉thr = 1 (plots truncated
for clarity).

3.2. Overcoming the limitations of the model 87

0.000 0.033 0.066 0.100
Network sparsity index

0

15

30

45

60
Fr

ac
tio

n
of

 te
st

 se
t e

xa
m

pl
es

 [%
]a)

original penalty term
relaxed penalty term

101 102 103

Number of training iterations

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 m
et

ric
 v

al
ue

b)

Cross-entropy loss
Spike-firing regularization
F1-score
Network spike activity

Figure 3.15: a) Network sparsity index empirical distributions for models trained on MNIST data
depending on the spike-firing penalty term used during training. b) Training curves of a classification
SNN model trained with the modified spike-firing penalty term on MNIST data.

hidden layers 𝐻

QN𝑥 =
|𝐻𝑞,𝑥 |
|𝐻 | . (3.69)

With the help of the ratio QN𝑥 it is possible to compare spiking activity sparsity of different
models. To illustrate this concept, we train two models on the MNIST digit classification
task. The only difference between the two models is that one is trained using the original
spike-firing penalty (3.11), whereas the other employs the modified approach (3.67). All other
hyperparameters were the same as in the preliminary study in Section 3.1.4.2. Both models
achieved near-identical classification performance on test data (F1-score of 0.971 vs. 0.970
for the modified penalty term). Figure 3.15a presents the hidden layer activation sparsity
empirical distributions for the two models evaluated on test set data. It is clear that using the
modified spike-firing penalty results in a model that uses fewer neurons to process examples.
Moreover, the ratio QN𝑥 for this model exhibits larger variance, suggesting that this neural
activity sparsity is context-based, i.e., that a different subset of neurons will respond to each
input signal. Furthermore, Figure 3.15b presents training curves for the model trained with the
modified spike-firing penalty. When compared with the alternative (presented previously in
Figure 3.13), we observe that the model is encouraged to minimize the cross-entropy term at
earlier iterations, despite the network being relatively inactive at this stage. Note that while the
network spike activity score continues to increase throughout the entire training procedure, it
reaches a lower value than for the model trained with the original penalty term.

Overall, the proposed modification of the spike-firing penalty term allows finer control over

88 Chapter 3. Spiking Neural Networks

the network spiking activity by not applying the penalty to cases which the network has already
correctly solved. Interestingly, the network sparsity can be further influenced by choosing a
different task-specific loss function itself, or by modifying the input data encoding. This can
result in models processing the signal with even fewer events produced by the network. This
topic is explored in further detail in Section 4.3.1.

3.2.4 Signal propagation rules with multiple inputs & multiple outputs (MIMO)

A significant limitation of the model is the inability to process information changing over time.
It assumes that every neuron in the model, including input neurons, can elicit at most one
spike (by implicitly setting 𝜏ref = ∞). Our goal is to extend the signal propagation rules of the
aforementioned model so that its hidden and output neurons are also able to produce multiple
spikes each. For brevity, we use a MIMO network descriptor throughout this Section to refer to
the model that supports signal propagation with multiple inputs and multiple outputs.

In case of multiple events arriving at the input synapse, the equation (3.1) becomes

𝑑𝑉 (𝑡)
𝑑𝑡

=

𝐶∑︁
𝑐=1

𝑤𝑐

𝑇𝑐∑︁
𝑗=1
𝑖
[𝑗]
𝑐 (𝑡) =

𝐶∑︁
𝑐=1

𝑇𝑐∑︁
𝑗=1
𝑤
[𝑗]
𝑐 𝑖
[𝑗]
𝑐 (𝑡) , (3.70)

where 𝑇𝑐 is the total number of events observed in channel 𝑐. Note that this formula expli-
citly highlights the fact that every event 𝑡 [𝑗]𝑐 of channel 𝑐 is associated with the same weight
{ 𝑗 : 𝑤 [𝑗]𝑐 = 𝑤𝑐}. Therefore, a single channel with 𝑇𝑐 events is equivalent to 𝑇𝑐 virtual (or
time-flattened) channels with a single event each. Introducing a new index {𝑘 : 𝑘 = 1, . . . , 𝐾}
over these virtual input channels such that 𝐾 =

∑𝐶
𝑐=1 𝑇𝑐 we obtain the following representation

of (3.70)
𝑑𝑉 (𝑡)
𝑑𝑡

=

𝐾∑︁
𝑘=1

𝑤𝑘𝑖𝑘 (𝑡) , (3.71)

which is identical to (3.1). It follows that the equations for forward and backward signal
propagation through the network introduced in (3.5)-(3.9) still hold for the layer observing
inputs spiking over time, provided that the indices are substituted where appropriate. The
proposed idea of time-flattening the input signal and projecting input layer weights is presented
in Figure 3.16a.

Furthermore, allowing each neuron to spike more than once requires setting a finite non-
negative refractory period 𝜏ref. In that case the causal set of input spikes becomes

𝑄𝑚 =

{𝑘 : 𝑡𝑘 < 𝑡 [𝑚]out } if 𝑚 = 1

{𝑘 : 𝑡 [𝑚−1]
out + 𝜏ref < 𝑡𝑘 < 𝑡

[𝑚]
out } otherwise

, (3.72)

where {𝑚 : 𝑚 = 1, . . . , 𝑀} is the index over the sequence of neuron output spikes. Computing
the 𝑚-th output spike time can be done iteratively, noting that 𝑀 is at most equal to 𝐾 (the

3.2. Overcoming the limitations of the model 89

𝑤

Presynaptic
neuron

Postsynaptic
neuron

𝑡

Virtual presynaptic neurons

𝑤

𝑤
𝑤

𝑤

Input spike
train

Time-flattening
the input spike

train

Postsynaptic
neuron

𝑡

Output spike
train

𝑡𝑜𝑢𝑡
[0] = −∞

Unrolling
the postsynaptic

neuron feedback loop

a)

b) Presynaptic
neuron

𝑡𝑜𝑢𝑡
[4]𝑡𝑜𝑢𝑡

[3]𝑡𝑜𝑢𝑡
[2]𝑡𝑜𝑢𝑡

[1]

𝑡 1 𝑡 2 𝑡 3 𝑡 4

𝑡1

𝑡2

Four iterations of
the postsynaptic

neuron
computation

𝑡3

𝑡4

Figure 3.16: Signal propagation rules in the MIMO SNN. The flow of time is represented by an axis
going from left to right, i.e., the earliest spike is at the left side of each subfigure. a) A presynaptic
neuron that observes multiple input spikes can be represented as multiple virtual presynaptic neurons,
each observing a single spike. All virtual presynaptic neurons have the same weight between them and
the postsynaptic neuron, identical to the weight associated with the original connection before time-
flattening. b) The ability of the postsynaptic neuron to produce spikes depends on all input spike trains
from presynaptic neurons, as well as the previously generated output. This feedback loop imposed by
the spike causality principle can be unrolled over time, where the postsynaptic neuron computation is
repeated with the same input spike trains, but for different timestamps of the previously generated event.
This cascade proceeds until it is impossible for the postsynaptic neuron to generate an output spike. The
implicit output spike at 𝑡 [0]out = −∞ designates the initial state of the postsynaptic neuron, i.e., it has not
generated a spike yet.

neuron cannot spike more often than once per input spike). The iterative computation over 𝑚
can be stopped early when an empty causal set is encountered (𝑄𝑚 = ∅). Taking this new
definition of a causal set into consideration, the implicit formula for 𝑡 [𝑚]out becomes

𝑧
[𝑚]
out =

∑
𝑘∈𝑄𝑚

𝑤𝑘𝑧𝑘∑
𝑘∈𝑄𝑚

𝑤𝑘 − 𝑉thr
𝜏syn

, (3.73)

whereas the partial derivatives are

𝜕𝑧
[𝑚]
out
𝜕𝑧𝑘

=

𝑤𝑘∑

𝑘∈𝑄𝑚
𝑤𝑘−

𝑉thr
𝜏syn

if 𝑘 ∈ 𝑄𝑚

0 otherwise
, (3.74)

90 Chapter 3. Spiking Neural Networks

Ou
tp

ut
Hi

dd
en

 #
3

Hi
dd

en
 #

2
Hi

dd
en

 #
1

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
Time [τsyn]

In
pu

t
La

ye
r n

eu
ro

ns

(a) 𝜏ref = 0.1

Ou
tp

ut
Hi

dd
en

 #
3

Hi
dd

en
 #

2
Hi

dd
en

 #
1

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
Time [τsyn]

In
pu

t
La

ye
r n

eu
ro

ns

(b) 𝜏ref = 1

Figure 3.17: Spike raster plot for models trained with two different values of 𝜏ref responding to the same
input example.

𝜕𝑧
[𝑚]
out

𝜕𝑤𝑘
=

𝑧𝑘−𝑧 [𝑚]out∑

𝑘∈𝑄𝑚
𝑤𝑘−

𝑉thr
𝜏syn

if 𝑘 ∈ 𝑄𝑚

0 otherwise
, (3.75)

and additionally
𝜕𝑧
[𝑚]
out

𝜕𝑤𝑐
=

∑︁
{𝑘: 𝑤𝑘≜𝑤𝑐 }

𝜕𝑧
[𝑚]
out

𝜕𝑤𝑘
, (3.76)

where the set {𝑘 : 𝑤𝑘 ≜ 𝑤𝑐} denotes the subset of all 𝑘 for which the virtual (time-flattened)
weight 𝑤𝑘 corresponds to the original 𝑤𝑐. Note the absence of any explicit dependence
between two consecutive output spikes {𝑡 [𝑚]out , 𝑡

[𝑚+1]
out } in equations (3.73)-(3.76), or equivalently

∀𝑚
𝜕𝑧
[𝑚+1]
out

𝜕𝑧
[𝑚]
out

= 0 . This is fundamentally different from signal propagation in the backpropagation
through time (BPTT) algorithm [163], and is a direct result of the IF neuron’s independence on
its own history (i.e., it is memoryless). Instead, the gradients are simply summed over output
spikes. This concept of iterating over the 𝑀 output spikes is summarized in Figure 3.16b.
Signal propagation through the MIMO SNN model can be visualized using a spike raster plot,
such as the in Figure 3.17.

3.2. Overcoming the limitations of the model 91

Overall, the proposed algorithm shows how to simulate and train a time-coding MIMO SNN
by time-flattening the presynaptic spike trains and unrolling the postsynaptic neuron feedback
loop imposed by the spike causality principle. This procedure is sufficient to encode and process
information with multiple spikes. However, it must be stressed that the concepts described above
and illustrated in Figure 3.16 specifically refer to operating the model on conventional hardware.
Once trained, the spiking network (i.e, synaptic weights and neuron-specific hyperparameters)
can be realized on existing neuromorphic hardware, in which case the virtual presynaptic
neurons are no longer needed (hence the name) as reusing neurons for multiple input and output
events is implied. The only requirement is that the device either implements or approximates
the IF neuron computation (such as IBM TrueNorth [164] or Intel Loihi [165]).

The introduced signal propagation rules for the MIMO networks are tested on two machine
learning problems studied in later sections of this thesis. Section 3.3 revisits the Twitter
bot classification problem, whereas Chapter 5 is focused on vehicle identification based on
magnetic profile measurements. The main difference between the two tasks is that in the former
the data already exists as an event sequence with a single event type,g whereas the latter requires
converting the underlying signal into the spiking domain.

3.2.4.1 Vectorized computation through a MIMO layer – forward pass

The proposed MIMO signal propagation rules require small adjustments to the vectorized
computation proposed in Section 3.2.1. Crucially, the computation must now be described
in terms of fourth-order tensors (albeit singular dimensions can also be present). Let
Z ∈ [1,∞]𝑁×1×𝐶×𝛩 be the layer input tensor with 𝛩 denoting the largest number of events
observed in a single input channel of the minibatch. Sequences included in Z need not
have the same number of events as they can simply be padded with non-event indicator
(𝑧𝑛𝑐𝜗 = ∞) across the last two modes. Then, time-flattening Z according to the virtual index
{𝑘 : 𝑘 = 1, . . . , 𝐾} is simply the result of mode-1 matricization of Z. The resulting matrix
Z(1) ∈ [1,∞]𝑁×1×𝐾×1 has elements

Z(1) =

𝑧111 𝑧121 . . . 𝑧1𝐶1 𝑧112 . . . 𝑧1𝐶𝛩

𝑧211 𝑧221 . . . 𝑧2𝐶1 𝑧212 . . . 𝑧2𝐶𝛩
...

...
. . .

...
. . .

. . .
...

𝑧𝑁11 𝑧𝑁21 . . . 𝑧𝑁𝐶1 𝑧𝑁12 . . . 𝑧𝑁𝐶𝛩

. (3.77)

gWe show in the relevant section that training a MIMO network on a single event type is detrimental to the
model performance.

92 Chapter 3. Spiking Neural Networks

Conversely, time-flattening the synaptic weights matrix W ∈ R1×𝑃×𝐶×1 requires mode-4 broad-
casting

W = bcast4 (W;𝛩) (3.78)

in order to associate each input neuron spiking over time with the same weight, and then
mode-2 matricization of the resulting tensor afterwards. These steps produce a matrix
W(2) ∈ R1×𝑃×𝐾×1 with elements

W(2) =

𝑤11 𝑤12 . . . 𝑤1𝐶 𝑤11 . . . 𝑤1𝐶

𝑤21 𝑤22 . . . 𝑤2𝐶 𝑤21 . . . 𝑤2𝐶
...

...
. . .

...
. . .

. . .
...

𝑤𝑃1 𝑤𝑃2 . . . 𝑤𝑃𝐶 𝑤𝑃1 . . . 𝑤𝑃𝐶

. (3.79)

Note that Z(1) and W(2) effectively have the same dimensionality as the forward pass in-
puts Z (3.38) and W (3.39). As the rest of the vectorized algorithm is specified in terms of Z
and W, it follows that Z(1) and W(2) can be used in their stead and no further modifications
are necessary in order to process inputs spiking over time. This is illustrated in Figure 3.18.
A clear limitation of the matricization-based solution is that the shape of all tensors used in
the computation dynamically scales with the total number of events in the presented batch of
examples. Therefore, this might be an unfeasible approach when the data is represented by
many channels with many events each. As such, from a more practical perspective, one should
avoid passing examples with vastly different total number of events within the same batch.

Allowing the output neurons to spike multiple times in response to the input sequence
introduces a feedback loop into the signal propagation rules (3.72). This dependency makes it
impossible to devise an algorithm that computes all outputsZout ∈ [1,∞]𝑁×𝑃×1×𝑀 (where 𝑀
denotes the largest number of events observed in an output channel of the minibatch) in a
single forward pass through the layer. This necessitates an iterative approach that builds Zout

(frontal) slice-by-slice. Fortunately, within a single iteration the vectorized algorithm outlined
in Section 3.2.1.2.2 still holds, provided that there exists a mechanism that discards a subset of
input spikes depending on the most recent output spike of the neuron. This follows from the
memoryless property of the IF neuron: anything that occurred before the output spike has no
impact on neuron’s future operation once the refractory period subsides. Recall from (3.43)
that Z ∈ [1,∞]𝑁×𝑃×𝐾×1 is a third-order tensor representing input spikes broadcasted across
the second mode.h Presume that Z′out ∈ [1,∞]𝑁×𝑃×𝐾×𝑀 is a mode-3-broadcasted output
spikes tensor constructed from the intermediate results of 𝑀 iterations. Similarly, presume that
Z′ ∈ [1,∞]𝑁×𝑃×𝐾×𝑀 is the masked input spikes tensor corresponding to the 𝑀 iterations.

hWhetherZ denotes the actual or time-flattened inputs is irrelevant for the present discussion.

3.2. Overcoming the limitations of the model 93

Then the elements ofZ′ are

𝑧′𝑛𝑝𝑘𝑚 =

∞ if 𝑚 > 1 ∧ (Z)𝑛𝑝𝑘 ≤ 𝑧ref

(
Z′out

)
𝑛𝑝𝑘 (𝑚−1)

(Z)𝑛𝑝𝑘 otherwise
, (3.80)

where 𝑧ref = exp
(
𝜏ref/𝜏syn

)
represents the refractory period. Of course, according to the

discussion in Section 3.2.4, the number of iterations 𝑀 is not known upfront and so tensorsZ′,
Z′out must be built (frontal) slice-by-slice: passing (Z′):::𝑚 as the forward pass input produces(
Z′out

)
:::𝑚. No further changes are necessary in the vectorized forward pass implementation

(Figure 3.18).
From a practical perspective, it is not necessary to pass the entire masked input spikes

tensor through the layer at every iteration. It is possible to take progressively smaller subtensors
of (Z′):::𝑚 at every iteration by:

• removing horizontal slices corresponding to examples that do not elicit any further
response in either output neuron,

• dropping lateral slices for output neurons which have not fired for the most recent iteration
for any of the examples,

• removing frontal slices for input neurons which have all of their spikes masked according
to the causality principle, or observe no events altogether,

whenever applicable.i

3.2.4.2 Vectorized computation through a MIMO layer – backward pass

Modifications in the backward pass of the algorithm stem from the fact that input
Z ∈ R𝑁×1×𝐶×𝛩 and output spikes Zout ∈ R𝑁×𝑃×1×𝑀 are now represented by third-order
tensors. Note that while the last tensor mode represents a “spike count dimension” for bothZ
andZout, in general 𝛩 ≠ 𝑀 . It follows that the backward pass input signal 𝜕𝐿

𝜕Zout
∈ R𝑁×𝑃×1×𝑀

is also a third-order tensor. We wish to compute the partial derivatives 𝜕𝐿
𝜕Z ∈ R

𝑁×1×𝐶×𝑀 and
𝜕𝐿
𝜕W ∈ R

1×𝑃×𝐶×1. Let us first consider the partial derivatives with respect to the time-flattened
inputs Z(1) (3.77) and weights W(2) (3.79). From the chain rule of derivatives we have

𝜕𝐿

𝜕Z(1)
=

𝑀∑︁
𝑚=1

𝑃∑︁
𝑝=1

(
𝜕𝐿

𝜕Z′out
⊙
𝜕Z′out
𝜕Z′

)
:𝑝:𝑚

𝜕𝐿

𝜕W(2)
=

𝑀∑︁
𝑚=1

𝑁∑︁
𝑛=1

(
𝜕𝐿

𝜕Z′out
⊙
𝜕Z′out
𝜕W′

)
𝑛::𝑚

, (3.81)

iThis could be further optimized by expressing the computation in terms of sparse matrices, which would allow
passing specific elements rather than subtensors through the layer.

94 Chapter 3. Spiking Neural Networks
Transform

ed batch
of input spikes

Transform
ed batch

of output spikes
Layer w

eights

Backw
ard pass

H
adam

ard product

D
ouble sum

 over
 slices

Restore pre-
m

atricization
shape

H
adam

ard product
D

ouble sum
 over

 slices

Restore pre-
m

atricization
shape

Sum
 over
 slices

m
ode-1

m
atricization

m
ode-2

m
atricization

Forw
ard pass

M
ask input spikes

Figure
3.18:

Vectorized
signalpropagation

through
the

M
IM

O
spiking

dense
layer.

D
ashed

arrow
s

pointing
tow

ards
operatorblocks

denote
inform

ation
that

changesthe
outputelem

ent-w
ise

orinfluencesthe
orderofelem

ents.“Forw
ard

pass”
and

“B
ackw

ard
pass”

blocksreferto
the

com
putation

described
fora

layer
w

ithoutM
IM

O
capabilities

–
parts

ofitcan
be

reused
w

ithoutany
im

pactfulm
odifications.

Top:
forw

ard
pass.

Forillustrative
purposes

the
block

thatm
asks

inputspikesbased
on

the
outputsofthe

previousiteration
isplaced

outside
the

“Forw
ard

pass”.
In

an
actualsoftw

are
im

plem
entation

thisstep
should

be
done

aftercom
puting

Z̃
to

avoid
sorting

a
third-ordertensor.B

ottom
:backw

ard
pass.

3.2. Overcoming the limitations of the model 95

where
𝜕𝐿

𝜕Z′out
= bcast3

(
𝜕𝐿

𝜕Zout
;𝐾

)
, (3.82)

and 𝜕Z′out
𝜕Z′ and 𝜕Z′out

𝜕W′ are given by (3.61) and (3.62), respectively, noting that fourth-order tensors
computed in the MIMO layer forward pass are used instead. The sum over mode-𝑚 in (3.81) is
a direct result of the IF neuron’s independence on its own history, i.e., spikes originating from
the same output neuron are independent of one another.

The partial derivatives 𝜕𝐿
𝜕Z and 𝜕𝐿

𝜕W can be obtained by reshaping 𝜕𝐿
𝜕Z(1) and 𝜕𝐿

𝜕W(2)
such that

the respective n-mode matricizations are reverted. Then,

𝜕𝐿

𝜕W
=

𝛩∑︁
𝜃=1

(
𝜕𝐿

𝜕W

)
:::𝜗

, (3.83)

which concludes the backward pass. The backward pass part of the algorithm is summarized
in Figure 3.18.

3.2.4.3 Computational complexity of the MIMO SNN

Let us briefly comment on the computational burden of the MIMO SNN. This algorithm slightly
increases the complexity of the single-spike version in [123]. While the proposed MIMO SNN
approach introduces an unavoidable feedback loop resulting from the spike causality principle,
it does not prevent the model from training with modern deep learning software frameworks,
such as TensorFlow [158] or PyTorch [159]. During such iterative search over output spikes,
the SNN is no different from a nonspiking RNN.

Note that the proposed algorithm iterates over the space of discrete output spike events
rather than discretizing time at a predefined time-resolution. This leads to significantly fewer
iterations when computing the full output spike train of each neuron than the alternative
requiring a discretized time simulation. Additionally, this allows the MIMO SNN to compute
arbitrarily late events with respect to the reference time, whereas discretized-time algorithms
are limited in scope by the simulation window. Note that it is possible to impose an upper
limit on the number of events generated by a single neuron in order to reduce the number of
iterations, should the need arise. For now, we rely on the exhaustive search over the event
space. Importantly, this event space is finite as each neuron cannot generate more events than
it observes across all synapses.

Nevertheless, the MIMO SNN adversely scales with the number of events observed by
presynaptic neurons, as well as by those generated by its neurons. The former has the biggest
effect on the input layer, in which the number of virtual (time-flattened) channels can be
extremely large when the network has numerous input neurons, each observing lengthy spike
trains. This limits the applicability of our approach to multichannel data streams without too

96 Chapter 3. Spiking Neural Networks

many events (although it is difficult to estimate what this upper limit actually is), unless the
dataset is preprocessed to contain fewer events. Furthermore, the average processing time
increases with the number of spikes generated by the layer as the feedback loop must be
unrolled over time. However, note that each successive spike is less likely to be generated
(because the causal set shrinks with each iteration), making the computational complexity of
subsequent iterations smaller than preceding ones. Fortunately, the network spiking activity
can be controlled by the 𝜏ref hyperparameter, which is evidenced in the following Sections.

3.3 Applications – Twitter bot detection

So far, the presented time-to-first-spike SNN model was assessed in terms of toy problems (such
as the XOR logic), or a simple image-based dataset (MNIST). While the insights gained during
this study were invaluable in identifying the limitations of the proposed model and proposing
extensions that mitigate those shortcomings, it is important to consider a real-life applicability of
the model. For this reason we would like to revisit the Twitter bot detection problem which was
introduced in Section 2.5 in the context of evaluating a classical, point-process-based approach.
Given that each sequence from the Twitter dataset is univariate (i.e., multiple spikes occurring
in a single input channel) and that the events occur at timescales differing by almost five orders
of magnitude, it presents an opportunity to verify the proposed MIMO signal propagation rules,
as well as to evaluate ideas related to addressing the problem of training instabilities manifesting
due to large absolute event-time values. Additionally, choosing to analyze the model on the
same problem as before lets us compare the two approaches.

3.3.1 Preprocessing

The tweet-retweet sequences described in Section 2.5.2 are characterized by two peculiar traits
that make designing an SNN-based classifier difficult. First, we note that all events occur in
only one channel. If all neurons in the network have the same value of parameters 𝜏syn, 𝜏ref

and 𝑉thr, then this scenario imposes additional constraints on the weights during training. Note
that in this scenario the synaptic weight of each connection must be positive, otherwise the
postsynaptic neuron is unable to produce any spike. This also means that each postsynaptic
neuron eventually produces a spike as the IF neurons are unable to lose charge if all presynaptic
weights are positive. Additionally, if some weights are too large, then it is possible that the
associated postsynaptic neurons will produce nearly identical spike trains, with only slight
variations in spike frequency and their timing (illustrated in Figure 3.19). While it is certainly
not impossible to train a network with such constraints on the input layer, we can expect this to

3.3. Applications – Twitter bot detection 97

w1 = 0.25

w2 = 0.50

w3 = 1.00

w4 = 2.00

w5 = 3.00

w6 = 4.00

2 4 6 8 10
Time [τsyn]

w7 = 5.00

Figure 3.19: Simulated spike trains from a simple network with one input neuron and seven postsynaptic
neurons. In blue: input spike train (the same in all rows), in orange: spikes generated by postsynaptic
neurons. The shaded area denotes the refractory period after generating a spike. All output neurons
have the same values of parameters 𝜏syn, 𝜏ref and 𝑉thr with the only difference between them being the
synaptic weight 𝑤. Note that if the weight it too large (in this case 𝑤 ≥ 3), the neuron elicits a spike in
response to every input event, unless it occurs during the refractory period, effectively repeating the input
sequence. This means that a group of postsynaptic neurons is redundant because they produce almost
identical spike trains. In such scenario, output sequence variability could be improved by adjusting the
values of 𝜏syn, 𝜏ref and 𝑉thr for each neuron individually.

be more difficult. In fact, in Section 3.3.3.3 we empirically show that training a model with a
single input neuron is indeed more challenging than the alternative.

For these reasons we explored the possibility of transforming the input spike trains into
multiple sequences with fewer events. This is analogous to conducting feature engineering
instead of relying on trainable feature extractors in artificial neural networks. Loosely inspired
by the technique of binning used in neuroscientific studies [166], we identify a collection of bins
that divide the spike train aggregated over all examples into sub-sequences with approximately
the same number of events in each bin.j This concept is illustrated in Figure 3.20 by dividing
the empirical density functions of the two classes. Importantly, the step that identifies binning
thresholds is computed over the training examples. Each sub-sequence can then be shifted so
that it starts at 𝑡 = 0 by subtracting the corresponding binning threshold.

We note that binning is a valid strategy for this specific problem because it is assumed that
events aggregated into a tweet-retweet sequence of each user are independent of one another [5].
While this is a reasonable assumption given the data, it seems plausible that graph community

jBy contrast, in neuroscience binning produces the number (or an average number of) events that had occurred
in a given time interval over multiple repetitions of the experiment.

98 Chapter 3. Spiking Neural Networks

0.0

0.2

0.4

10−1 100 101 102 103 1040.0

0.2

0.4

Retweet delay [min]

De
ns

ity

Figure 3.20: The result of binning the empirical density functions of the two classes (above – legitimate
users; below – bots) into 10 bins over a given data split.

structure and programmed bot behavior play an important role in what gets retweeted and
when. Additionally, the IF neuron exhibits the memoryless property where the internal state of
the neuron (membrane voltage) is preserved regardless of how recent was the previous event.
Finally, as a side note, taking the binning approach to the extreme would result in a multitude of
thin bins such that there is at most one event per bin for each example. We did not consider this
to be worth pursuing as it would greatly increase the number of neurons needed to represent
the signal in the input layer of the network.

The second point that needs to be addressed is that events occur at timescales differing by
almost five orders of magnitude. At such scales the transformed events in (3.6) easily surpass
the limits of double-precision floating-point data format, as has been shown in Section 3.2.2.
This problem still persists even after binning the sequences and shifting each sub-sequence so
that it has a common starting time of 𝑡 = 0. It is easy to see (Figure 3.20) that for bins with a
higher index, the range of event times, while reduced, is still relatively large for the network.
And so, we can either increase the number of bins (but as discussed previously this does not
seem to be a suitable approach), or transform each sequence to reduce the range of observed
values. We opt to do the latter approach. Therefore, we apply a log-transform to the binned
sub-sequences with events occurring in range 𝑡 ∈ [𝑇𝑐−1, 𝑇𝑐) such that

∀𝑡∈[𝑇𝑐−1,𝑇𝑐) 𝑔(𝑡; 𝑏𝑐, 𝑐) = log𝑏𝑐 (𝑡 − 𝑇𝑐−1 + 1) , (3.84)

for 𝑏𝑐 > 1, where 𝑐 ∈ {1, 2, . . .} is the index of the bin, 𝑇𝑐 is the upper boundary of the 𝑐-th bin
(i.e., the threshold), and 𝑇0 = 0. Each bin corresponds to a single network input channel, hence

3.3. Applications – Twitter bot detection 99

we reuse the index 𝑐 to make this explicit and avoid introducing additional notation. Note that
each transformed sequence is shifted to start at 𝑡 = 0. This transform is controlled by a single
parameter 𝑏𝑐, the base of the logarithm. Note that 𝑔(𝑡; 𝑏𝑐, 𝑐) is a decreasing function of 𝑏𝑐.

In general, the transform in (3.84) allows setting a different 𝑏𝑐 for each bin (channel). In
our experimental scope we consider two strategies for selecting 𝑏𝑐:

1) Setting the same base 𝑏 > 1 for all bins

∀𝑡∈[𝑇𝑐−1,𝑇𝑐) 𝑔1(𝑡; 𝑏, 𝑐) = log𝑏 (𝑡 − 𝑇𝑐−1 + 1) . (3.85)

2) Adjusting the base of the logarithm for each bin separately so that all bins have the same
range of values after transform

𝑔2(𝑡; 𝜅, 𝑐) =
𝜅

𝑔1(𝑇𝑐; 𝑏, 𝑐)
𝑔1(𝑡; 𝑏, 𝑐) , (3.86)

where 𝜅 is the time-instant assigned to the threshold 𝑇𝑐 after transform, i.e.,
𝜅 = 𝑔2(𝑇𝑐; 𝜅, 𝑐). Note that in this strategy the value of the parameter 𝑏 does not matter
as the actual logarithm base for a given bin 𝑐 is controlled by the boundaries 𝑇𝑐−1, 𝑇𝑐
and the parameter 𝜅. For simplicity, we use the same 𝜅 for all bins.

The difference between these two approaches lies in the range of values produced by the
transform. Strategy 𝑔1(𝑡; 𝑏, 𝑐) is unbounded from above and so it might be difficult to select
a single 𝑏 that works at both short and long timescales. Conversely, the function 𝑔2(𝑡; 𝜅, 𝑐)
squeezes all values to lie in the range [0, 𝜅], which might make it easier for the network to learn
the relationship between events at different timescales.

Figure 3.21 summarizes the outlined preprocessing steps. We found that applying the 𝑏-
parameterized log-transform on binned sub-sequences sufficiently addressed our concerns for
training the proposed spiking neural network. Note that while the log-transform (3.84) has the
unfortunate effect of significantly increasing the latency of the model, we are only interested in
the final classification prediction of the model and not its real-time performance.

3.3.2 SNN training objective

Using a MIMO SNN to propagate preprocessed tweet-retweet spike trains through the network
makes the classifier training objective introduced in Section 3.1.4.2 not applicable. We can no
longer operate on the assumption that only a single spike is ever elicited by any neuron in the
network. Thus some adjustments are necessary, particularly to the spike regularization term.

Recall that training the network with a low spiking activity penalty term in (3.11) is crucial
for ensuring event propagation through a single-spike network. This penalty term can be
trivially extended to networks with inputs spiking over time by substituting the index over the
input neurons 𝑐 with an index over virtual input channels 𝑘 . We can also apply regularization

100 Chapter 3. Spiking Neural Networks

log𝑏1 𝑡 − 𝑇0 + 1

log𝑏2 𝑡 − 𝑇1 + 1

log𝑏𝐶 𝑡 − 𝑇𝐶−1 + 1 MIMO
SNN

Class
Label

𝑇1

𝑇2

𝑇𝐶

.

.

.

.

.

.

Two strategies for selecting 𝑏𝑐:

1. A fixed 𝑏, the same for all bins:

𝑔1 𝑡; 𝑏, 𝑐 = log𝑏 𝑡 − 𝑇𝑐−1 + 1

2. Bin-threshold-dependent base:

𝑔2 𝑡; 𝜅, 𝑐 =
𝜅

𝑔1 𝑇𝑐; 𝑏, 𝑐
𝑔1 𝑡; 𝑏, 𝑐

𝑇0 = 0

𝑇𝐶−1

Figure 3.21: A diagram of the preprocessing steps to obtain signals used to train a MIMO SNN on
Twitter dataset.

to each neuron output spike 𝑚 separately. Thus, the regularization term that considers the
MIMO SNN signal propagation rules is

𝑅spiking =

𝐻∑︁
ℎ=1

𝑀ℎ∑︁
𝑚=1

𝑅ℎ , (3.87)

where 𝑅ℎ is redefined as 𝑅ℎ = max
(
0, 𝑉thr
𝜏syn
−∑𝐾ℎ

𝑘=1 𝑤𝑘ℎ

)
. However, this implicitly assumes that

every presynaptic weight 𝑤𝑘ℎ is associated with an event 𝑡𝑘ℎ. In Section 3.2.3 we showed that
this need not be the case as the SNN can exhibit a sparse neuron activity. It is entirely possible
that for some neuron ℎ the inequality

∑𝐾ℎ

𝑘=1 𝑤𝑘ℎ >
𝑉thr
𝜏syn

holds and yet the neurons does not
fire anyway. This scenario might occur if none of the presynaptic neurons observe an event.
Therefore, (3.87) can be reformulated to make this dependence on input spikes explicit

𝑅spiking =

𝐻∑︁
ℎ=1

𝑀ℎ∑︁
𝑚=1

𝑅𝑚ℎ , (3.88)

where 𝑅𝑚ℎ = max
(
0, 𝑉thr
𝜏syn
−∑

𝑘∈𝐵𝑚ℎ
𝑤𝑘ℎ

)
with 𝐵𝑚ℎ ⊂ 𝑄𝑚ℎ being the set of valid inputs for

the 𝑚-th output of the ℎ-th postsynaptic neuron

𝐵𝑚ℎ =

{𝑘 : 𝑡𝑘ℎ < ∞} if 𝑚 = 1

{𝑘 : 𝑡 [𝑚−1]
outℎ + 𝜏ref < 𝑡𝑘ℎ < ∞} otherwise

. (3.89)

For completeness
𝑅𝑚ℎ = 0 if {𝑘 : 𝑡𝑘ℎ < ∞} = ∅ .

3.3. Applications – Twitter bot detection 101

In our preliminary experiments we found that the penalty term is too strong for 𝑚 > 1, skewing
the training objective towards forcing neurons to output multiple spikes, rather than letting it
focus on solving the actual task. As such, we train our models by setting ∀𝑚>1 𝑅ℎ𝑚 = 0, which
only penalizes neurons that do not spike at all (alternatively one might consider applying a
smaller weight to subsequent spikes).

Similarly to other classification tasks discussed in this Chapter, the modified cross-entropy
loss (3.10) was used to ensure that the output neuron corresponding to the correct class fires
first among all neurons of the last layer. Note that this training objective ignores the fact that
each output layer neurons can produce multiple spikes. This means that for the last layer, either
the refractory period could be set to 𝜏ref = ∞, or that all 𝑚 > 1 output spikes could simply be
ignored (as they have no impact on the gradient propagation anyway). Both approaches lead to
the same result.

Applying the dynamic scaling factor (3.67) to the spike regularization term computed over
the set of valid inputs (3.12), and plugging the result into the loss function minimized by
the original model (3.88) leads to the following loss function minimized by the MIMO SNN
training objective

𝐿total(𝑧, 𝑦) =
1
𝑁

𝑁∑︁
𝑛=1

𝐿𝑛 (𝑧, 𝑦) + 𝛾
1∑𝑁

𝑛=1 1 (𝑦𝑛 ≠ �̂�𝑛)

𝑁∑︁
𝑛=1

1 (𝑦𝑛 ≠ �̂�𝑛) 𝑅 [𝑛]spiking . (3.90)

The purpose of the dynamic scaling factor applied to the spike regularization term is to penalize
low spike activity only when the predicted label does not match the ground truth, for reasons
previously described in Section 3.2.3.

3.3.3 Training setup & results

In all of our experiments we used the same 𝐶-12-24-48-2 architecture, where 𝐶 is the number
of bins used to preprocess the spike train, the network has 2 output neurons, and other digits
represent the number of neurons in the hidden layers. This produces a relatively small network
of about 1536 + 12𝐶 parameters. However, a MIMO SNN model complexity is not only
determined by the number of parameters, but also by the refractory period 𝜏ref (see (3.72))
which controls how often each neuron in the network is able to spike.

3.3.3.1 Impact of refractory period on the signal propagation

In order to settle on a single value of 𝜏ref to use in our experiments, we conducted a prelim-
inary study by training the classification model on a small subset of data (stratified random
10% sample). We considered 𝜏ref ∈ [0.01, 1], selected on a 5-point logarithmically-spaced
grid. The data was preprocessed into 30 bins, with bin-threshold-dependent logarithm base 𝑏𝑐

102 Chapter 3. Spiking Neural Networks

computed for 𝜅 = 3. All models were trained for 200 epochs of 10 update steps each, with a
batch size of 64. This was enough to reach perfect classification score on the training set for
each model (note that in this experiment we were not interested in the classifier’s performance
on unseen data, but rather in how the signal propagates through the MIMO network). The
synaptic regularization parameter was set to 𝛾 = 105 in order to promote spiking activity in the
network. Training was repeated 5 times in order to average-out processing time measurements.

In the preliminary study we measured the average time it took to finish the training epoch,
as well as sparsity-adjusted average number of spikes produced by the network in response to
the input signals. The “sparsity-adjusted” term states that only the active (i.e., not quiescent)
neurons are considered when discussing the impact of the choice of 𝜏ref. To succinctly describe
this measure we introduce the network activity indicator

NAI =
1

𝑁
∑𝐿
𝑙=1 𝐻𝑙

𝑁∑︁
𝑛=1

𝐿∑︁
ℓ=1

𝐻ℓ∑︁
ℎℓ=1

𝑀𝑛ℎℓ , (3.91)

where 𝑀𝑛ℎℓ is the number of output spikes generated by the ℎℓ-th neuron of the ℓ-th layer in
response to the 𝑛-th example in the minibatch.

The results are summarized in Figure 3.22. We observe that both the NAI measure and
the epoch training time rapidly increase in the initial stages (the first 50 epochs) because then
the spike regularization term forces the model to learn how to propagate the signal through the
network. Afterwards, the training time remains relatively constant throughout the rest of the
training, while the NAI continues to increase, albeit at a much slower rate. Note that the growth
of the NAI over training epochs is unbounded because there is no term in the loss function (3.90)
that encourages the network to spike fewer times. This shows that setting a smaller 𝜏ref causes
the network to produce more spikes.

However, surprisingly, the obtained processing time measurements do not support the no-
tion that it is possible to predict which model will take the least amount of time to process
the examples based solely on the value of the refractory period. Such relationship was anti-
cipated as the number of iterations needed to compute all output spikes in (3.73) increases as
𝜏ref decreases. Perhaps significantly increasing the number of repetitions of this experiment
would allow us to reach a conclusive answer (due to the uncertainty inherent to processing time
measurements). Nevertheless, applying a min-max normalization to the processing time meas-
urements separately for each experimental run shows that the relative increase in processing
time over the training epochs is similar across different scenarios. Based on all these results,
we settle on 𝜏ref = 0.1 in our further experiments as the largest 𝜏ref that still exhibits a steep
increase in the NAI measure over training steps.

3.3. Applications – Twitter bot detection 103

0.0

0.5

1.0

1.5

Ne
tw

or
k

ac
tiv

ity
in

di
ca

to
r

10

20
Pr

oc
es

sin
g

tim
e

[s
]

0 25 50 75 100 125 150 175 200
Number of training epochs

0.0

0.5

1.0

No
rm

al
ize

d
pr

oc
es

sin
g

tim
e

τref = 1.00 ⋅ 10−2

τref = 3.16 ⋅ 10−2
τref = 1.00 ⋅ 10−1

τref = 3.16 ⋅ 10−1
τref = 1.00 ⋅ 100

Figure 3.22: The impact of the refractory period 𝜏ref on a trained MIMO SNN properties. Top
panel: sparsity-adjusted average number of spikes produced by the network. Middle panel: average
epoch training time. Bottom panel: min-max normalized average epoch training time.

3.3.3.2 Bot detection – binary classifier performance

In our experiments on the classification problem, having fixed the value of 𝜏ref, we explored
the impact of proposed preprocessing on model performance. We constructed a grid over pre-
processing parameter space, selecting the number of bins from the set 𝐶 ∈ {10, 20, 30, 40, 50},
whereas the log-transform parameter was set to either 𝑏𝑐 (𝜅) for 𝜅 ∈ {1, 2, 3} , or 𝑏 ∈ {10, 30}.
For every pair of parameters on this grid, several models were trained and evaluated with a 5-fold
cross validation. Thus, in total 125 models were trained. All models were trained for 50 epochs,
each with 100 training steps over 64 class-balanced training examples. The learning rate was
set to 10−3 in all steps. The synaptic regularization term factor 𝛾 varied substantially depending
on the current training epoch – initially set to 105 in order to guide the model towards a state in
which it is able to propagate spikes throughout all layers. After 10 epochs, we set 𝛾 = 10−2 so
that the model could focus on minimizing the task-specific loss term (3.10).

Given the small dataset size (366 legitimate users and 389 bots), we opt to use data
augmentation in order to increase the effective training split size. Two types of augmentation
were used:

• drop events with probability 0.1,

104 Chapter 3. Spiking Neural Networks

• randomly shift each event in time by 𝑡𝛿 uniformly distributed in (−0.05, 0.05), independ-
ently with probability 0.3.

The latter augmentation type is applied only after the sequence has been preprocessed, making
sure that the shift-augmented sub-sequence is still composed of events occurring at nonnegative
time.

The classification accuracy achieved by all models trained over the preprocessing grid
is summarized in Table 3.3. The results obtained during the hyperparameter search on the
preprocessing grid do not suggest an existence of some pattern that holds across different number
of bins or the transform choice. Notably, however, the setting denoted by the parameter 𝑏 = 30
seems to be more robust compared to other settings in that it is the only one that allowed the
model to consistently reach an accuracy of about 70% or higher regardless of the number of
bins.

Overall, the wide range of classification scores reported by different models suggest that
it is imperative to perform hyperparameter tuning when using the proposed MIMO network.
Nevertheless, it must be stressed that the hyperparameters associated with the neural model
itself (𝑉thr, 𝜏syn, 𝜏ref) can be selected heuristically. Firstly, note that 𝑉thr only influences the
scale of trained weights and has no impact on training dynamics, making the choice of 𝑉thr

arbitrary. On the other hand, the time constants 𝜏syn and 𝜏ref can be selected according to the
input event distribution. The post-synaptic potential constant 𝜏syn needs to be longer than the
relevant temporal patterns present in the input data [130]. Lastly, setting 𝜏ref < 𝜏syn prevents
the scenario in which the network rarely generates events.

Table 3.4 compares our best model with the results obtained in the original study [5] in
terms of accuracy, recall, precision, F1-score and Matthews correlation coefficient (MCC).
Our MIMO SNN model outperforms all of the presented supervised approaches (Botometer,
Social fingerprinting), as well as most of the unsupervised methods (HoloScope; hand-crafted-,
PCA- and TICA-based RTBUST). Importantly, the latter group of methods relied on fitting the
model on the entire unlabeled dataset of 63,762 accounts and evaluating on the labeled portion,
whereas we focus only on the annotated subset (as outlined in Section 2.5.2), composed of
about 755 labeled cases in total. We note that the variational autoencoder (VAE) variant of the
RTBUST model performed better than our approach. As this model also leveraged the unlabeled
portion of the dataset, it stands to reason that there is a clear benefit to clustering-based methods,
in which the presence of a suspicious behavior emerges only when analyzing user in groups,
rather then as individuals. Crucially, the examples examined in [5] were manually labeled
and thus any incorrectly labeled cases could have had a much bigger impact on the supervised
model trained with significantly fewer examples. Lastly, it is important to note that the original
study lacks technical details related to the LSTM-VAE network architecture, which prevents us

3.3. Applications – Twitter bot detection 105

Table 3.3: Classification performance of the MIMO SNN models trained on Twitter tweet-retweet
dataset, depending on the chosen preprocessing parameters. A star (★) denotes the best result for a row,
whereas the diamond (⋄) denotes the best result in a column.

(a) accuracy [%]

Stratified 5-fold
cross validation

Log-transform-related parameter

𝑏 = 10 𝑏 = 30 𝑏𝑐 (𝜅 = 1) 𝑏𝑐 (𝜅 = 2) 𝑏𝑐 (𝜅 = 3)

N
um

be
r

of
bi

ns 𝐶 = 10 ★⋄73.25 ± 3.71 70.33 ± 3.83 68.74 ± 3.09 68.08 ± 4.20 68.61 ± 10.46
𝐶 = 20 70.20 ± 3.72 ★70.60 ± 1.65 67.95 ± 2.70 70.33 ± 3.80 68.21 ± 5.70
𝐶 = 30 67.42 ± 2.03 ★⋄71.52 ± 4.74 69.40 ± 4.76 70.86 ± 1.83 69.14 ± 3.09
𝐶 = 40 69.27 ± 2.67 70.60 ± 4.40 66.75 ± 4.50 69.40 ± 4.42 ★⋄71.13 ± 3.49
𝐶 = 50 67.68 ± 4.20 71.26 ± 6.22 ★⋄72.19 ± 3.82 ⋄70.99 ± 4.26 68.08 ± 3.61

(b) F1-score [%]

Stratified 5-fold
cross validation

Log-transform-related parameter

𝑏 = 10 𝑏 = 30 𝑏𝑐 (𝜅 = 1) 𝑏𝑐 (𝜅 = 2) 𝑏𝑐 (𝜅 = 3)

N
um

be
r

of
bi

ns 𝐶 = 10 ★⋄72.46 ± 5.08 67.10 ± 7.04 68.43 ± 3.90 68.71 ± 3.90 57.78 ± 29.15
𝐶 = 20 69.59 ± 3.28 68.17 ± 4.59 68.16 ± 3.03 ★69.96 ± 5.11 65.08 ± 7.61
𝐶 = 30 64.74 ± 6.75 ★70.21 ± 5.75 67.33 ± 7.21 ⋄70.10 ± 2.64 65.89 ± 2.90
𝐶 = 40 66.80 ± 5.14 68.28 ± 5.40 64.43 ± 6.55 66.18 ± 6.09 ★⋄69.07 ± 3.64
𝐶 = 50 68.63 ± 4.31 ⋄70.25 ± 5.60 ★⋄71.25 ± 5.10 69.89 ± 5.81 67.23 ± 4.64

Table 3.4: Comparison of model performance on the bot detection task between different techniques.

Source Technique Accuracy [%] Recall [%] Precision [%] F1-score [%] MCC

[5]
Botometer 58.30 30.98 69.51 42.86 0.2051
HoloScope 49.08 0.49 28.57 0.96 −0.0410
Social fingerprinting 71.14 89.78 65.62 75.82 0.4536

[5]

RTBUST (handcrafted features) 53.64 77.07 52.84 62.70 0.0767
RTBUST (PCA) 51.54 95.12 51.11 66.49 0.0446
RTBUST (TICA) 53.64 95.12 52.28 67.47 0.1168
RTBUST (VAE) 87.55 81.46 93.04 86.87 0.7572

our MIMO SNN 73.25 ± 3.71 69.56 ± 8.93 76.39 ± 3.34 72.46 ± 5.08 0.47 ± 0.07

from making a comparison between the two methods that is adjusted for model complexity as
expressed by the number of trainable parameters.

3.3.3.3 Model ablation study

For the best-performing model, we ran an ablation study experiment in order to determine
which components of the proposed approach have a significant impact on model performance.
We tested four scenarios:

106 Chapter 3. Spiking Neural Networks

1) no data augmentation,
2) setting 𝜏ref = ∞, i.e., preventing the neurons in the network from spiking more than once

in response to a given input signal,
3) no splitting of channels into separate bins,
4) no log transform.

Each one represents a single change to the experimental protocol outlined in Section 3.3.3.2.
Clearly, with the exception of the first scenario, these changes have a major impact on how the
signal is propagated through the network or on training dynamics.

As evidenced in Table 3.5, removing any of the components causes a reduction in the model
performance. This shows that the proposed data augmentation scheme is effective in mitigating
the problem of overfitting. Furthermore, the drop in performance for the 𝜏ref = ∞ scenario
suggests that some of the model’s capacity to process information is tied to the ability to
process it over time. Unsurprisingly, not splitting the input spike train into multiple bins makes
it more difficult for the model to learn long range dependencies, which is an effect that was
anticipated while designing this preprocessing step. Lastly, the steepest drop in performance
is observed when the data is passed through the network without any transform that squashes
the range of values at its input. Note that the obtained average accuracy of 47.68% is quite
close to the ratio of the number of legitimate users to all users in the stratified evaluation data
split (48.48%). This means that the model was unable to learn anything, most likely because
using the raw event times as large as 2 · 104 minutes transformed according to (3.6) surpasses
the limits of double-precision floating-point data format, making training impossible. Note
that the trained models are in general biased towards higher precision, with the exception of
the channel-splitting scenario, despite being trained with a nearly class-balanced data. In bot
detection systems it is preferable to favor precision instead of recall as the system administrator
should be reasonably certain that a user is a bot before taking any action.

For completeness, Figure 3.23 shows representative examples of confusion matrices for the
five scenarios, chosen according to the MCC. It is evident in the results for the experiment
without log transform that for a failed model all predictions are towards the negative class. This
stems from the assumption that if the output layer produces no events, then the model should
return the negative class prediction. However, this effect is negligible for properly trained
models – in other scenarios less than 1% of bot accounts were misclassified as legitimate users
due to this assumption.

3.4. Summary 107

Table 3.5: The SNN model performance in the ablation study, given the specified scenario.

Scenario Accuracy [%] Recall [%] Precision [%] F1-score [%] MCC
baseline 73.25 ± 3.71 69.56 ± 8.93 76.39 ± 3.34 72.46 ± 5.08 0.47 ± 0.07
no data augmentation 66.89 ± 1.45 58.09 ± 10.61 73.77 ± 6.50 63.80 ± 5.60 0.36 ± 0.03
infinite refractory period 67.28 ± 2.64 56.30 ± 4.52 74.44 ± 5.63 63.89 ± 3.06 0.36 ± 0.06
no channel-splitting 63.18 ± 4.60 69.67 ± 14.22 62.61 ± 2.74 65.42 ± 7.49 0.27 ± 0.10
no log transform 47.68 ± 1.18 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 −0.06 ± 0.07

(a)

human bot
Predicted label

hu
m

an
bo

tTr
ue

 la
be

l 62 12

21 56

(b)

human bot
Predicted label

hu
m

an
bo

t

60 14

34 43

(c)

human bot
Predicted label

hu
m

an
bo

t
66 7

37 41

(d)

human bot
Predicted label

hu
m

an
bo

t

46 27

25 53

(e)

human bot
Predicted label

hu
m

an
bo

t

74 0

77 0

Figure 3.23: Confusion matrices corresponding to the best-performing iteration with respect to the
MCC value for five ablation experiment scenarios: (a) baseline, (b) no data augmentation, (c) infinite
refractory period, (d) no channel splitting, (e) no log transform.

3.4 Summary

This Chapter explored the topic of spiking neural networks which combine recent advances in
deep learning with the ability to process event data. The SNN more closely model biological
neurons, including their ability to process event streams similarly to biological networks by
inducing a neural coding scheme using a corresponding training loss function. Among the
various SNN types we focused on the time-coding single-spike time-to-first-spike SNN. They
rely on a set of equations that determine when each postsynaptic neuron elicits its first spike.
Such network can be trained end-to-end directly in the spiking domain.

We conducted a reproducibility study of the paper that introduced this specific SNN type.
This allowed us to assess the correctness of our own implementation. Furthermore, those
results could be used as a reference point when discussing the model limitations and shortcom-
ings. Specifically, we found that the naïve algorithm is computationally expensive, making it
unfeasible to train deeper networks. Furthermore, it was observed that the SNN exhibits the
time-invariance property, i.e., shifting the input spikes in time causes the model to respond in
the exact same way, just at a different time. This has a net negative impact on the training
dynamics. Lastly, we verified that the trained model is able to elicit an output spike as soon as
the signal is propagated through the network, even if some of the neurons in the hidden layers
have yet to fire, making these hidden layer neurons’ future spikes redundant. Our contributions

108 Chapter 3. Spiking Neural Networks

to the SNN research described in this Chapter stem from this set of initial observations.
We were able to significantly reduce the time it takes to compute the layer outputs by

vectorizing the computation (i.e., computing all outputs at once in a single pass over data). This
requires finding all possible inputs combinations and returning the ones that produce the earliest
output spike, rather than relying on the iterative search for a valid combination for each neuron
separately. The proposed algorithm is three orders of magnitude faster than the baseline. This
makes it feasible to train the SNN in modern deep learning frameworks.

To address the adverse effect of the absolute time reference on model training dynamics
a time-aligned variant of the model was proposed. It ensures that all layers of the network
observe events starting at a relative time 𝑡 = 0. The input events are shifted in time before
the layer computation and then the resulting layer output events are shifted to the original time
reference. We verified that training a time-aligned SNN results in the exact same set of final
network weights, regardless of the magnitude of the absolute time reference.

We noticed that the spike-firing penalty, which promotes the SNN activity during training,
is extremely important during the initial training iterations, with its relative importance dimin-
ishing as training progresses. Only after the model is able to produce spikes at its output does
the task-specific loss function component begin to play any role in the training process. As such,
we introduced a modified regularization term that dynamically scales the penalty, applying it
only when the training task is not solved correctly. We found that this change results in models
that use fewer neurons to process examples, avoiding spike redundancy. This neural activity
sparsity is context-based, i.e., a different subset of neurons will respond to each input signal.

The last of the proposed modifications to the baseline time-to-first-spike SNN model is
to relax the requirement of an infinitely long neuron refractory period 𝜏ref. Doing so means
that neurons in the model are no longer limited to eliciting at most one spike during a single
input example presentation. Once trained, the model can be realized on existing neuromorphic
devices that implement the IF neuron computation. The proposed MIMO SNN expresses the
entire algorithm in terms of iteratively calculating successive spikes, which stands in contrast
to other works simulating the state of the entire network over a finite time window with a fixed
time step. The MIMO SNN is suited towards datasets with spike trains composed of relatively
infrequent events occurring at different timescales. Furthermore, the MIMO SNN computation
is compatible with the proposed vectorized approach for a single-spike layer, meaning that
model training can be implemented in modern deep learning frameworks, making the approach
scalable to large volumes of data.

The model was applied to the labeled subset of Twitter user activity data that was introduced
in Section 2.5 to evaluate the kernel-based classifier. Our best model achieved an accuracy
score of 73.25%, compared to 87.55% obtained by the original RTBUST study. However, we

3.4. Summary 109

note that the latter is an unsupervised learning algorithm and is therefore able to infer different
non-overlapping patterns of activity of distinct groups of users not present in the class-label-
aggregated data. Furthermore, our model relies on about 755 labeled example compared to
the 63,762 unlabeled cases used to train RTBUST. As the data was manually labeled by the
authors of the study, any incorrectly labeled examples could have had a much bigger impact
on the supervised model trained with significantly fewer examples. We have shown that the
proposed MIMO SNN operates directly in the event-domain, and so there is no need to encode
the time series in any way for it to be processed by the model. In addition to the classification
model feasibility study, this work showcased novel signal preprocessing steps, exemplary spike
train data augmentation techniques, and the heuristic of modifying regularization scale factor
during training to tackle this challenging dataset. We found that these concepts were critical at
preventing overfitting and stabilizing the training procedure, as evidenced by the results of the
ablation study.

Finally, compared to the kernel-based classifier analyzed in Section 2.5.4, we observe that
the SNN performed better on the Twitter bot detection task than the alternative in terms of the
accuracy and F1-score. It is entirely possible that the observed difference in performance stems
from a more exhaustive analysis of the problem through the lens of the SNN framework, or that
this model is simply better suited towards such a peculiar dataset. Regardless of the reason, it
might be more beneficial to compare the properties and applicability scope of different models
rather than their performance on specific tasks. We note that both approaches will struggle with
updating their predictions as new events are observed. For the point process kernel classifier
the shape function estimate must be recomputed (as the kernel bandwidth controls which part
of the estimate changes) and it is unclear how to select the bandwidth when event observation
window increases. On the other hand, we have demonstrated that the arrival of a new event
might change the causal set, impacting the signal propagation in the SNN. This also implies
that the network prediction must be recomputed on each new event. It might be beneficial to
explore modifications that address this issue for both algorithms in further research. Overall,
the SNN, while more difficult to tune, has the advantage of scaling better with the training
data volume. Additionally, the SNN classifier can be used for multi-class problems without
relying on One-vs-All meta-heuristics, and does not require that the signal is present in only
one channel. And so, moving forward, we shall focus on the SNN-based solution.

An important limitation that remains unaddressed is that once excited by an input spike, the
membrane voltage of an IF neuron resets to its resting potential only after eliciting an output
spike. This means that such SNN cannot be used for continuous monitoring of long-running
processes because the state of the entire network is not reset in the absence of events. Therefore,
the model would need to incorporate a voltage decay constant, such as the one present in a

110 Chapter 3. Spiking Neural Networks

Leaky Integrate-and-Fire (LIF) neuron. Exploring this topic in the future is bound to extend
the applicability of the model. Furthermore, it might be interesting to revisit the vectorized
implementation of the spiking layer introduced in Section 3.2.1. Specifically, the current version
of the algorithm operates on third-order tensors of fixed size. Non-event indicators present in
each tensor contribute to the overall computation while having no impact on the generated spike.
One possible approach would be to formulate computation rules in terms of sparse matrices so
that only the informative events are considered.

Chapter 4

Siamese Spiking Neural Network

Quantifying the similarity between two objects is the basis of similarity learning – an area of
supervised machine learning with applications to ranking, recommendation engines, tracking,
and identity verification. In contrast to classification techniques, the supervisory information
is related to the concept of “sameness” or “difference” between two objects and not their
actual class label identity. In fact, a weaker form of supervision that establishes a relative
degree of similarity is also acceptable. When data is abundant, and their relative similarity
is known, it is possible to train a so-called Siamese network – a neural network that maps
objects in the similarity space. Siamese neural networks have established themselves as a
versatile class of deep learning models, achieving state-of-the-art results on tasks such as object
tracking, information retrieval, and change-point detection. And yet, so far, little attention
has been paid to applying these models in the context of spiking neural networks operating
directly in the event-data domain. Adapting the Siamese model in the SNN context necessitates
leveraging existing spike train similarity measures developed by the neuroscientific community.
In neuroscientific research determining spike train similarity between pairs of event streams is
commonly used to identify groups of similar neural ensembles or to find causality between the
observed spike train and source stimuli. Importantly, the similarity measure chosen to analyze
the spike trains must be selected in accordance with the neural coding scheme observed in the
data.

The goal of this Chapter is to propose a training scheme for a Siamese SNN that is
compatible with the time-to-first-spike SNN established in the previous Chapter. Section 4.1
presents a brief overview of spike train similarity measures commonly used in neuroscientific
research, and introduces Siamese neural networks in a nonspiking context. Section 4.2 is
focused on establishing the SNN training objective for a selected spike train similarity measure.
Next, the proposed methodology is evaluated on two image datasets. In Section 4.3 the
MNIST digit dataset is converted into the spiking domain with novel conversion schemes,

111

112 Chapter 4. Siamese Spiking Neural Network

and the quality of the Siamese embeddings of input images is evaluated by measuring the
classifier performance while varying the number of output neurons. This study also evaluates
the model in terms of sparse spiking activity and prediction latency. Lastly, the proposed
Siamese SNN model is applied to the problem of differentiating signal from artefacts in the
context of cosmic ray detection using images taken by modern smartphones. Section 4.4
introduces the CREDO experiment and briefly summarizes the image acquisition. Similarly to
the MNIST study, the results are also discussed in terms of sparse spiking activity and prediction
latency, additionally highlighting a simple heuristic that stabilizes the training dynamics.

4.1 Introduction

4.1.1 Spike train similarity

Spike train similarity measures are an important tool in analyzing the relationship between pairs
of event streams measured in biological neural networks [105]. Computing such measures is
an essential step in the spike train analysis that identifies groups of similar neural ensembles
or determines causality between observed spike train and source stimuli. Commonly used
similarity measures include:

• Victor-Purpura (VP) distance [37]: the cost of transforming one spike train into the other
(by shifting, deleting and inserting events),

• van Rossum (vR) distance [167]: squared Euclidean distance between kernel-smoothed
spike trains,

• Schreiber dissimilarity measure [168]: correlation between kernel-smoothed spike trains.
For the latter two similarity measures, the first step is to apply a kernel-smoothing transform
to a discrete event stream [169] in order to obtain a continuous function representation of
the underlying process. Both van Rossum and Schreiber similarity measures can be elegantly
described in terms of the reproducing kernel Hilbert space (RKHS). Paiva et al. [170] derive an
RKHS kernel in terms of process intensity and introduce a memoryless cross-intensity kernel
that can be used to cluster spike trains. In this space they relate the van Rossum distance to the
squared Euclidean norm, while Schreiber similarity is described in terms of the Cauchy-Schwarz
distance (a measure introduced by the authors based on the Cauchy-Schwarz inequality).

Importantly, the choice of a spike train similarity measure is heavily dependent on the
chosen neural coding scheme [171], which describes the mechanisms of information transfer
between neurons. Notably, no one measure is clearly better than the others. The vR distance is
better at tasks where rate-coding dominates, while the other two are better at describing precise
spike timing (synchrony), although they are unstable for spike trains with a small number of
spikes [172]. The result presented by Chicharro, Kreuz & Andrzejak [173] suggests that the

4.1. Introduction 113

choice of “optimal” time-scale parameter of these metrics is arbitrary and does not correspond
to biologically meaningful time scales. A more recent study [171] suggests that other metrics
such as the ISI- [174], SPIKE- [175] and RI-SPIKE distance [176] are better at resolving timing
and synchrony coding, provided that spike trains contain a reasonably large number of events.

Experimental research strongly suggests that neuron spike trains are autocorrelated, with
the preceding spike having the largest impact on the current event [107]. Short interspike
intervals tend to be followed by long intervals and vice versa. This effectively reduces the spike
count variability, which implies a lower noise level for a rate-coded signal, improving signal
detectability in noisy conditions [106]. Moreover, this allows differentiating between spike
trains that exhibit the same impulse response and have the same empirical ISI distribution [104].
This suggests that an effective spike train similarity measure should take into account the relative
timing of spike events.

A recent study conducted by Sihn & Kim [177] indicates that that the Earth Mover’s Distance
(EMD) is superior to other spike similarity metrics with respect to measuring the timing-
sensitive coding because it depends only on the precise timing of events and is insensitive
to changes of the mean rate of firing. The EMD is a metric similar to the Victor-Purpura
distance in that it also minimizes the cost of transforming one spike train to another. Unlike the
VP distance, however, it only considers shifts (i.e., the EMD is equivalent to the VP distance
in the limit of prohibitively expensive event insertion or deletion) and operates on fractional
values assigned to each spike. It is also worth noting that the EMD is a special case of the
general class of the so-called Wasserstein metric.

4.1.2 Siamese neural networks

Siamese neural networks are a type of machine learning models trained to optimize a similarity
measure between network outputs for different examples of data from some domain [178, 179].
More broadly it can refer to any neural network architecture that compares two or more input data
points passed through identical sub-networks (such as network layers sharing parameters) [180]
(Figure 4.1a). While the concept of querying inputs against a fixed database based on their
similarity (i.e., given some input signal, find the most similar set of signals from the database)
is not novel [181], the Siamese network has the advantage of operating on raw signals, skipping
the domain-specific feature-engineering step of the model design. It has been observed that the
feature space optimized by Siamese networks – or the embeddings space – can be used to query
instances of entities that were not shown during training [182]. In the context of classification,
this concept (called the one-shot learning) means training a model to recognize classes that
were never present in the training set [183] (Figure 4.1b).

114 Chapter 4. Siamese Spiking Neural Network

Training (verification)

Input pair Similar?

Inference (one-shot classification)

Test
image
(query)

Template images
(database)

a)

b)

shared
weights

Input
signals

Siamese
network
layers

Embeddings Similarity-
scoring
function

Similarity score

Figure 4.1: a) General structure of a Siamese neural network. The similarity-scoring function can be
a separate piece of computation, or an additional set of network layers. b) One-shot classification with
a Siamese neural network. During training the network learns to verify whether a given pair of images
represents similar entities (based on known ground truth labels). During inference the network is shown
examples of previously unseen classes. If the model is capable of generalization, it will still be able to
determine whether a given test image matches an image from the set of templates. Note that it is possible
to set a decision threshold such that no template image matches a given query.

Like most neural network models, the performance of Siamese neural networks depends
on both the quality of data (raw signal, labels), as well as on a set of hyperparameters related
to the optimized embedding space. This latter group is composed of model design decisions
that influence the feature space dimensionality, distance metric, and the loss function. Even
though the nonlinear data transform parameterized by the model results in data that is of
lower dimensionality than the input, the embedding space might still suffer from the so-called
curse of dimensionality (where points in high-dimensional vector space are approximately
equidistant) [184]. Conversely, the choice of an optimized distance metric seems to be arbitrary
(i.e., “whatever works best”) and is usually selected from a pool of simple metrics that are
applicable to the given input data domain. For vector data the Manhattan distance, Euclidean
distance or cosine similarity are commonly used.a

aCosine similarity is actually a semi-metric, but in context of Siamese neural networks this distinction is a mere

4.1. Introduction 115

In terms of the loss function definition one can differentiate two types of models, based
on how many examples are needed to compute the loss. For brevity, let us denote 𝑓𝑥 as the
embedding computed by a trained network for an input example 𝑥. The contrastive loss between
a pair 𝑓𝑎, 𝑓𝑏 is [185]

𝐿𝑎𝑏 =
𝑦

2
[𝑑 (𝑓𝑎, 𝑓𝑏)]2 +

1 − 𝑦
2
[max (0, 𝛼 − 𝑑 (𝑓𝑎, 𝑓𝑏))]2 , (4.1)

where 𝑦 represents the known similarity relationship between the pair (𝑦 = 1 when 𝑓𝑎 and 𝑓𝑏

are similar, 𝑦 = 0 otherwise), 𝛼 is a margin, and 𝑑 (·) is a distance function between the two
embeddings. This optimization criterion forces the computed pair of embeddings to be close
to one another in the feature space, while making the embeddings of dissimilar pairs distant by
at least the margin 𝛼 (Figure 4.2a). It is clear that the presence of the contrastive term in the
loss function prevents a trivial solution in which the network computes the same embedding
for all examples [186]. In general, models returning the same embedding for different input
examples exhibit an embedding collapse. Note that the contrastive loss is susceptible to a partial
embedding collapse as the first term is nonzero unless the embeddings are identical.

A different type of a pairwise loss function to train Siamese networks is the binary cross-
entropy [183]

𝐿𝑎𝑏 = −𝑦 ln (𝑝 (𝑓𝑎, 𝑓𝑏)) − (1 − 𝑦) ln (1 − 𝑝 (𝑓𝑎, 𝑓𝑏)) , (4.2)

where 𝑝 (·) is a scoring function that returns the probability of the two arguments being similar
to one another. Similarly to the contrastive loss, it forces the network to return a high similarity
score for a pair of embeddings computed for similar examples, and low score otherwise. The
difference between the two loss functions is subtle but important. The binary cross-entropy loss
trains the network to predict the relationship between a pair of inputs, whereas the contrastive
loss makes the model differentiate between its inputs. Note that either of these two functions can
be realized by the model presented in Figure 4.1a by properly choosing the activation function
for the final layer with a single neuron. Furthermore, the function 𝑝 (·) either takes into account
a predefined distance measure between the two embeddings, or computes a learnable metric
using its layers.

The triplet loss differs from the previously mentioned loss functions in that it compares
three examples at once [182]. Let 𝑓𝑎, 𝑓𝑝, 𝑓𝑛 be the embeddings computed by the model for
examples 𝑎, 𝑝, 𝑛 called the anchor, positive, and negative, respectively. Then, the formula

𝐿𝑎𝑝𝑛 = max
(
0, 𝛼 + 𝑑 (𝑓𝑎, 𝑓𝑝) − 𝑑 (𝑓𝑎, 𝑓𝑛)

)
, (4.3)

describes the contribution of a given triplet to the total loss. Minimizing 𝐿𝑎𝑝𝑛 ensures that
the distance computed by the function 𝑑 (·) between 𝑓𝑎 and 𝑓𝑝 (or the anchor-positive pair of

technicality.

116 Chapter 4. Siamese Spiking Neural Network

a)

A

P

N

A

P

N

A

P

N

𝑑𝑎𝑛

𝑑𝑎𝑝

𝛼 𝑑𝑎𝑛

𝑑𝑎𝑛

𝑑𝑎𝑝

𝑑𝑎𝑝

𝛼

𝛼

training

b)

training

A

P

N
𝑑𝑎𝑛

𝑑𝑎𝑝

𝛼

Figure 4.2: The impact of the loss function on the embedding space produced by the Siamese network.
𝑑𝑎𝑝 denotes the distance between embeddings of the anchor-positive pair, 𝑑𝑎𝑛 is the distance between
embeddings for the anchor-negative pair, and 𝛼 is the margin. a) Contrastive loss (margin forms a
hypersphere around the anchor embedding). b) Triplet loss (margin determines the thickness of the shell
around the anchor-positive pair in the hyperdimensional space). In both scenarios the model is trained
to push the embedding of the negative example outside the volume defined by the margin.

examples) is smaller than the distance between 𝑓𝑎 and 𝑓𝑛 (the anchor-negative pair) by at least
some margin 𝛼. This means that the loss can be minimized by either pushing the negative
embeddings away from the anchor, or by pulling the positive embedding closer (Figure 4.2b).
This push-pull mechanism makes the triplet loss less susceptible to an embedding collapse
than the contrastive loss, although it is more computationally expensive. Note that the binary
cross-entropy loss can also be adapted to the triplet scenario [187].

Perhaps uniquely, Siamese networks are much more vulnerable to training data sampling
than other deep learning models, due to interactions between same- and different-class pairs
(triplets) [188]. As neural networks are trained with minibatches, it is important for batches
to contain examples of different classes. Moreover, after some number of training iterations,
most pairs (triplets) of examples will contribute close to zero loss, and computing loss for these
examples will simply waste computational resources [189]. It is therefore important to select
difficult examples in order to achieve model convergence in a reasonable time frame.

Siamese networks have achieved state-of-the-art results on forgery detection [190], person
re-identification [182], as well as object- [191, 192] and person-tracking tasks [189]. Further-
more, these networks reach competitive performance in change point detection [193, 194] and
can even be used to design ranking engines [195, 196, 187]. These examples support the notion

4.2. Siamese SNN training objective 117

that the Siamese neural network is a versatile class of deep learning models, capable of solving
a wide variety of tasks.

4.2 Siamese SNN training objective

Training a spiking neural network such that the output spike train matches a predetermined
temporal pattern based on some similarity measure has been studied extensively. Several early
studies, such as the ReSuMe [128] or the Tempotron [116], focused on single-layered networks.
More recent works, however, emphasize the ability to train a multilayer SNN. For example,
in [197] a general supervised learning rule that minimizes an 𝐿2-distance between kernel-
smoothed spike trains is proposed; Zenke & Ganguli [141] optimize the van Rossum distance
between spike trains; whereas Xing et al. [198] train a network by minimizing the spike count
differences in predetermined time windows over all neurons in the output layer.

However, to train a Siamese model we require an objective that scores the relative similarity
of multiple output spike trains and not their absolute similarity to some predetermined pattern.
To the best of our knowledge, the only work directly related to adapting the Siamese model
to the SNN is by Luo et al. [199] which describes a Siamese spiking neural network obtained
by converting an existing convolutional neural network model to the spiking domain. They
measure the spike train similarity using a variant of the SPIKE-distance [200] and SPIKE-
synchronization [201] measures. Their model achieved competitive performance on several
visual object tracking benchmarks with low precision loss with respect to the original nonspiking
network.

In contrast to the work of Luo et al. [199], we propose a Siamese SNN model that is
optimized in the spiking domain, rather than be a product of converting an existing neural
network to the spiking domain. Additionally, we opt to encode information using single events
instead of bursts of spiking activity, making this model suitable for time-coding imposed by
the SNN type introduced in Chapter 3.

Generally speaking, the loss function to train the proposed time-coded Siamese SNN is a
composite of the triplet loss (4.3) averaged over a set of valid triplets in the minibatch 𝑄 (the
“batch-all” strategy described by Hermans et al. [189]), and the modified spike regularization
term 𝑅∗spiking (3.67) which dynamically scales the spike-firing penalty depending on how well
the network solves the task in the current iteration

𝐿𝑑total =
1
|𝑄 |

∑︁
{𝑎,𝑝,𝑛}⊂𝑄

𝐿𝑑𝑎𝑝𝑛 + 𝛾𝑅∗spiking

𝑄 = {𝑎, 𝑝, 𝑛 : 𝑎 ≠ 𝑝 ≠ 𝑛, 𝑦𝑎 = 𝑦𝑝 ≠ 𝑦𝑛}
, (4.4)

118 Chapter 4. Siamese Spiking Neural Network

where 𝑦𝑎, 𝑦𝑝, 𝑦𝑛 are the class labels of examples 𝑎, 𝑝, 𝑛; 𝛾 is a hyperparameter; and 𝑑 indicates
the spike train distance function. In order to define the modified spike regularization term 𝑅∗spiking

for the Siamese SNN, let us first introduce 𝑄𝑎 ⊂ 𝑄 as the set of all triplets associated with the
anchor 𝑎

𝑄𝑎 = {𝑝, 𝑛 : 𝑎 ≠ 𝑝 ≠ 𝑛, 𝑦𝑎 = 𝑦𝑝 ≠ 𝑦𝑛} . (4.5)

Additionally, let
𝑄AT𝑎 = {𝑝, 𝑛 ⊆ 𝑄𝑎 : 𝐿𝑑𝑎𝑝𝑛 ≠ 0} (4.6)

be the set of active triplets (i.e., triplets which contribute to a nonzero loss) for the anchor 𝑎.
Lastly, define

AT𝑎 =
|𝑄AT𝑎 |
|𝑄𝑎 |

(4.7)

as the ratio of active triplets for anchor 𝑎. Then,

AT =
1
|𝑈 |

∑︁
𝑎∈𝑈

AT𝑎 (4.8)

is the average ratio of active triplets computed for the current batch of examples composed of
anchors 𝑈. The empirical measure AT is used as an early stopping criterion for the training
procedure. Finally, the relaxed spike regularization term for the proposed Siamese SNN is

𝑅∗spiking =

0 if 𝑄 = ∅

1
|𝑈 | ·AT

∑
𝑎∈𝑈 AT𝑎 · 𝑅 [𝑎]spiking otherwise

, (4.9)

where 𝑅 [𝑎]spiking is the spike-firing penalty term in (3.11) computed only for the given anchor 𝑎.
Note that the spike-firing penalty is not applied to the anchor 𝑎 if all of its triplets are correctly
distributed in the embedding space. This is analogous to conditioning 𝑅∗spiking based on the
correct classifier prediction for a classifier SNN (3.67).

The proposed training objective is applicable to any bounded pairwise distance function 𝑑.
Throughout this Chapter we use the Earth Mover’s Distance as the distance function to measure
the similarity of spike trains produced by the proposed Siamese SNN. In doing so we rely on the
results in [177] stating that the EMD is superior to other spike similarity metrics when biological
neurons rely on precise timing to process information. Additionally, it has a low computational
complexity and is parameter-free. Conversely, in Chapter 5 we use the van Rossum distance
to select the parameters of signal-to-spike encoding schemes for multivariate time series data.
In contrast to the EMD, this measure is able to compute similarity between populations of
neurons rather than only between pairs of spike trains. Therefore, substituting the EMD with
the van Rossum distance in the Siamese SNN training objective would be a fairly straightforward
modification of the model.

4.2. Siamese SNN training objective 119

4.2.1 Earth Mover’s Distance

A spike train embedding 𝑓 (𝑡) of a spike train composed of events {𝑡𝑖} is

𝑓 (𝑡) = 1
𝑃

𝑃∑︁
𝑖=1

𝛿(𝑡 − 𝑡𝑖) , (4.10)

where 𝛿(𝑡) is a Dirac delta function and 𝑃 denotes the total number of spikes in the spike train.
Given another spike train embedding 𝑔(𝑡) = 1

𝑅

∑𝑅
𝑖=1 𝛿(𝑡 − 𝜏𝑖), the EMD between 𝑓 (𝑡) and 𝑔(𝑡)

takes the following form

EMD(𝑓 , 𝑔) =
∫ ∞

−∞
|𝐹 (𝑡) − 𝐺 (𝑡) | 𝑑𝑡 , (4.11)

where 𝐹, 𝐺 are cumulative distribution functions of embeddings 𝑓 , 𝑔, respectively. The func-
tion 𝐹 (𝐺 is defined analogously) is the normalized counting function (2.1) of the corresponding
spike train and takes the form 𝐹 (𝑡) = 1

𝑃

∑𝑃
𝑖=1 𝑢(𝑡 − 𝑡𝑖), where 𝑢(𝑡) is the step function. It is

worth noting that the EMD(𝑓 , 𝑔) is a special case of the Wasserstein metric corresponding to
the 𝐿1 norm. In this case it can be shown [202] that the Wasserstein metric can be consid-
erably simplified and represented by the formula in (4.11). The Wasserstein metric has very
deep geometrical properties as it is connected to the theory of optimal transport [202]. Lastly,
the distributions 𝐹, 𝐺 are piecewise constant nondecreasing functions, therefore the numerical
evaluation of (4.11) is straightforward [177]. The overall computational complexity of the EMD
for a pair of spike trains 𝑓 (𝑡) and 𝑔(𝑡), with 𝑃 and 𝑅 events respectively, is𝒪 (𝑃 + 𝑅), assuming
that events {𝑡𝑖 , 𝑖 = 1, . . . , 𝑃} and {𝜏𝑖 , 𝑖 = 1, . . . , 𝑅} are sorted [203]. Figure 4.3 summarizes the
computation of the EMD for a pair of spike trains.

In general, the EMD is set to zero if both sequences under comparison have no events, and is
set to infinity if one of the sequences is empty while the other is not. In any other case the EMD
is finite. This property violates the requirement stated in Section 4.2 that the distance function
used to train the Siamese SNN must be bounded. However, it can be utilized in the training
objective if all neurons in the output layer of the network generate at most one spike (note that
the SNN can be composed of the MIMO hidden layers). In this scenario, the output spike train
is constructed from concatenating events of all neurons and sorting them in an ascending order.
It can be argued that for an empty output spike train the optimization algorithm should focus
on generating at least one output spike by minimizing the spike-firing penalty 𝑅spiking instead
of the ill-defined task-specific loss, because the latter may be infinitely large. This leads to the
following definition of the EMD used in our Siamese SNN training objective

EMD∗(𝑓 , 𝑔; 𝑃, 𝑅) =

∫ ∞
−∞ |𝐹 (𝑡) − 𝐺 (𝑡) | 𝑑𝑡 if 𝑃 > 0 ∧ 𝑅 > 0

0 otherwise
, (4.12)

120 Chapter 4. Siamese Spiking Neural Network

0 2 4 6 8 10
0.0

1.0

0 2 4 6 8 10
0.0

1.0

0 2 4 6 8 10
Time

0.0

1.0

F(t)
G(t)

Figure 4.3: Top and middle panels: spike train embeddings 𝑓 (𝑡), 𝑔(𝑡) and their respective cumulative
distribution functions 𝐹 (𝑡), 𝐺 (𝑡). Bottom panel: the shaded area is the EMD between spike train
embeddings 𝑓 (𝑡) and 𝑔(𝑡).

which obviously requires that the 𝑅spiking component is also a part of the overall loss function.
During inference we rely on the solution to the unbounded distance problem proposed in [177].
Let 𝑓0 denote an embedding of an empty spike train and 𝑓𝑛 correspond to an embedding for a
spike train composed of 𝑛 uniformly distributed events on some bounded interval. Then

EMD(𝑓0, 𝑔) = lim
𝑛→∞

E [EMD(𝑓𝑛, 𝑔)] , (4.13)

where the events in 𝑓𝑛 are distributed in the interval imposed by the spike train embedding 𝑔.
This definition stems from the intuition that a spike train composed of uniformly distributed
events carries little information about spike timing, and so does an empty spike train.

4.3 Exploring the properties of the Siamese SNN

To verify the feasibility of training a Siamese spiking neural network using the proposed
objective, the model is trained on the MNIST dataset. This follows a well established practice
of evaluating novel image processing algorithms on this specific dataset, which has several
benefits. First of all, having a common benchmark dataset encourages comparison with other
methods, and promotes conducting reproducibility studies. Secondly, the MNIST dataset is
considered relatively simple, therefore it is prudent to validate a novel algorithm on a simple
benchmark before applying it to more challenging problems. Lastly, the experimentation sheds
light on reasonable initial settings for hyperparameter tuning. The presented summary of the
MNIST-based experiments is focused on analyzing the impact of the data-to-spike conversion

4.3. Exploring the properties of the Siamese SNN 121

scheme on the properties of the Siamese SNN, particularly on spiking activity sparsity and
model response latency.

4.3.1 Data preprocessing

In order to convert the static MNIST images into the spiking domain, we devise three separate
coding schemes which differ primarily in the number of events passed down to the network
input neurons. This allows us to explore how the resulting model properties are influenced by
different input data pixel-to-spike conversion methods. Each 28 × 28 image is first flattened
into a 784-element vector. The resulting vectors are processed differently, depending on the
experimental setting:

• Black&white (adapted from [123]): the vector representation of each image is binarized
with a threshold of 50% of global maximum pixel intensity, and one of two time instants 𝑡0
or 𝑡1 is assigned to the value of each bit. We set 𝑡0 = 0 and 𝑡1 = 1.79 𝜏syn, which correspond
to the values chosen by [123] for 𝜏𝑠𝑦𝑛 = 1. This is the same encoding scheme introduced
in Section 3.1.4.2 and used throughout the previous Chapter.

• Binary: each vector representation is binarized as in the black&white setting; however,
only a single time-instant 𝑡0, associated with white pixels, is used to describe the signal.
This slight modification of the previous setting stems from the observation that defining
two event-types, spiking at two different points in time, is redundant. Events are mutually
exclusive and thus the presence of one event implies that another could not have occurred.
As an implementation detail, we associate an auxiliary event-time 𝑡1 with black pixels
and set 𝑡1 = ∞.

• Grayscale: the original grayscale images are converted to the spiking domain by modeling
each pixel as an artificial neuron responding to a driving signal (synaptic current) of a
constant intensity 𝐼 proportional to the image pixel intensity (in range 0-1). For 𝑉0 = 0
the formula for the membrane voltage of the IF-based converter neurons is 𝑉 (𝑡) = 𝑡

𝜏𝑠𝑦𝑛
𝐼,

and the spike time corresponding to a pixel of a given intensity is

𝑡𝑜𝑢𝑡 =
𝑉𝑡ℎ𝑟𝜏𝑠𝑦𝑛

𝐼
. (4.14)

This model retains the desirable property that 𝑡𝑜𝑢𝑡 →∞ as 𝐼 → 0.

Figure 4.4 summarizes the three image conversion schemes. Note that in the binary and
grayscale settings some channels might not have any events associated with them. In this
context a lack of an event occurrence carries implicit information [204] that can be exploited
by the network.

122 Chapter 4. Siamese Spiking Neural Network

black&white binary grayscale

1

0

𝑡0

1

0

𝑡0 𝑡1

191

0

𝑡0

255

63

127

𝑡𝑖 𝑡𝑗 𝑡𝑘

.

.

.

.

.

.

.

.

.

.

.

.

..

Figure 4.4: Image-to-events conversion schemes. Each pixel of the flattened image is associated with a
single spike event.

For each of the three settings several 784-400-400-X networks were trained (denoting the
number of neurons in input, hidden and output layers, respectively). The dimensionality of the
last layer X was varied between 1 and 100. For brevity we use a setting-X notation which can be
understood as “a model trained under the experimental setting with X output neurons”. During
training we monitor the ratio of active triplets in the batch (4.8)) and stop training when it does
not decrease for 5 epochs. Each model was optimized using the RMSprop algorithm [161]
with a learning rate of 10−3, synapse regularization parameter 𝛾 = 400, synaptic time constant
𝜏𝑠𝑦𝑛 = 1, voltage threshold 𝑉𝑡ℎ𝑟 = 1, and the triplet loss margin 𝛼 = 0.1. Additionally, we
apply the 𝐿2 regularization with 𝜆 = 10−3 to the loss function (4.4). Finally, we find that
models trained in the binary setting require a much larger batch size of 𝑛 = 256 to effectively
train, whereas both black&white and grayscale models can be trained with a batch size as
low as 𝑛 = 64 examples. Therefore, a batch size of 𝑛 = 256 was used across all experiments.
Each model was trained 5 times, starting from different weights. Unless noted otherwise, the
presented results were obtained by averaging over different versions of each model (discarding
any outliers).

4.3.2 MNIST digit classification

In order to evaluate our approach, we measure the k-Nearest Neighbor (k-NN) classifier per-
formance as a proxy for the embedding space example proximity. A spike train embedding was
computed for each example using the trained Siamese SNN, then 𝑘 training set embeddings
closest to a given test set embedding were selected, which then could be used to determine the
test example label prediction by majority voting. We found that the classifier performance is
not influenced by changing 𝑘 for 𝑘 ≥ 7. Therefore, we set 𝑘 = 7 for all experiments. Compared
to the other time-coding SNN (Table 4.1; refer to Table 3.1 for comparison with other training

4.3. Exploring the properties of the Siamese SNN 123

Table 4.1: Classifier performance of different time-to-first-spike SNN on MNIST.

Model type Network architecture Performance

classifier
784-800-10 [123] 0.975
784-400-400-10 [123] 0.971
784-400-400-10 (our) 0.971

Siamese network 784-400-400-10 (our) 0.948

approaches), our best-performing model achieved a similar level of performance using a novel
approach to dataset encoding and signal transformation defined by the trained spiking neural
network. Importantly, the focus of this study was to show that the proposed methodology can be
used to train multilayer Siamese spiking neural networks with timing-sensitive neural coding.
Obtaining high accuracy was a secondary objective, mainly as a proxy for determining whether
the training procedure was successful or not.

The results obtained for each experiment for different output layer dimensionality are
summarized in Figure 4.5a. Models exhibit a steady increase in the classifier performance (and
as a result: the spike embedding quality) as the number of output neurons increases, up to
some experiment-dependent number of neurons, which then slowly deteriorates with a further
increase in layer size. We presume that a gradual drop in accuracy for larger output layers
might be a result of either a poor training hyperparameter choice, or due to the reduction of
class embedding separation in a larger embedding space. We test this claim by computing the
empirical relative contrast [184]

RC =
𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛

𝐷𝑚𝑖𝑛
, (4.15)

which compares the distance to the closest- (𝐷𝑚𝑖𝑛) and the furthest-neighbor (𝐷𝑚𝑎𝑥) for each
example. We compute the average relative contrast over all test set examples for each trained
model and summarize the results in Figure 4.5b. The average relative contrast diminishes as
the number of events increases. However, we also observe a plateau similar to the one in
the classifier performance. These results show that the effect of the number of events in the
spike train on the empirical relative contrast of the EMD is similar to that of a vector space
dimensionality on the 𝐿𝑘 norm distance measures for non-fractional 𝑘 [184]. This suggests that
the observed model performance decrease was caused by an inherent difficulty of optimizing
distance between points in a high-dimensional space.

124 Chapter 4. Siamese Spiking Neural Network

1 2 3 5 7 10 20 30 50 70 1000.72
0.79
0.86
0.93
1.00

Av
er

ag
e

F1
-s

co
re

ov
er

 te
st

 se
ta)

1 2 3 5 7 10 20 30 50 70 100
Number of output neurons

106

104

102Av
er

ag
e

re
la

tiv
e

co
nt

ra
st

ov
er

 te
st

 se
tb)

black&white binary grayscale

Figure 4.5: a) The impact of spike embedding length on the average k-NN classifier performance
over test set examples for three different experimental settings. Note the logarithmic scale on x-axis.
b) The average relative contrast vs. spike embedding length over test set examples for three different
experimental settings. Note the logarithmic scale on x- and y-axis.

4.3.3 Spike train embedding visualization

In order to visualize the spike train embeddings we compute empirical distributions of output
layer event-times, separately for each class, over all examples of the training set. An example of
such set of distributions for a pair of models trained under the black&white setting is shown in
Figure 4.6. Embeddings for the model with one output neuron are projected into a single point
in the embedding space, whereas the model with 10 output neurons exhibits larger variability
for all classes. These properties were observed across all experimental settings, implying that
they depend on the output layer dimensionality and not on the chosen input encoding.

4.3.4 Hidden layer activation sparsity

Interestingly, we observed that models trained under the binary and grayscale settings exhibit
a sparse internal representation of the input signal. Recall that the the fraction of quiescent
neurons to all neurons in hidden layers is the network sparsity index QN𝑥 (3.69). We compute
the ratio QN𝑥 for each example in the test set, which we denote QN for brevity. The resulting
hidden layer activation sparsity empirical distribution is presented in Figure 4.7a. The results
suggest that this neural activity sparsity is context-based, meaning that a different subset of
neurons will respond to each input signal. Only a negligible number of neurons never fire in
response to any image (corresponding to QN𝑥 = 1 for those images), which implies that the
observed sparsity is a result of the causal set neuron selection and is fundamentally different
from permanently inactive neurons which can be pruned from the network. Lastly, while there

4.3. Exploring the properties of the Siamese SNN 125

0
0.5

1
a)

0
0.5

1

0
0.5

1

Un
it-

no
rm

al
ize

d
fre

qu
en

cy

0
0.5

1

0 1 2 3 4 5 60
0.5

1

0 1 2 3 4 5 6
Time [τsyn]

0
1

2
3

4
5

6
7

8
9

0
0.5

1
b)

0
0.5

1

0
0.5

1

Un
it-

no
rm

al
ize

d
fre

qu
en

cy

0
0.5

1

0 1 2 3 4 5 60
0.5

1

0 1 2 3 4 5 6
Time [τsyn]

Figure 4.6: Empirical distributions of spike train embeddings computed over all training set examples
for black&white model with: a) one output neuron, b) 10 output neurons.

seems to be a slight trade-off between the classifier performance and the network sparsity (as
evidenced in Table 4.2), it can be considered small given that only about 15% of neurons are
used to process each example.

Furthermore, Figure 4.7b presents the effect of network output size on the observed sparsity
index. It seems that as the number of neurons increases, it becomes more difficult for the model

0.00 0.25 0.50 0.75 1.00
Network sparsity index

0

4

8

12

16

Fr
ac

tio
n

of
 te

st
 se

t e
xa

m
pl

es
 [%

]a)

binary grayscale

1 2 3 5 10 20 30 50 100
Number of output neurons

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

ne
tw

or
k

sp
ar

sit
y

in
de

x

b)

black&white binary grayscale

Figure 4.7: a) Network sparsity index empirical distributions for the binary-10 and grayscale-10
models. b) Test-set-averaged network sparsity index as a function of the number of output neurons for
each experimental setting.

126 Chapter 4. Siamese Spiking Neural Network

Table 4.2: Summary of the test-set-averaged classifier performance and the observed network sparsity
indices QN for models trained with 10 output neurons.

Model name F1-score QN
black&white-10 0.9480 ± 0.0009 0.0038 ± 0.0026
binary-10 0.9410 ± 0.0021 0.8473 ± 0.0100
grayscale-10 0.9257 ± 0.0030 0.7148 ± 0.0344

to process information using only a small subset of hidden layer neurons. This drop in the
sparsity index value is gradual for the grayscale model, but much steeper for the binary setting.
Note that the black&white model almost always uses all neurons in the network, regardless of
the last layer shape (the largest observed value of QN for this model type was 0.0049 ± 0.0009
for 5 output neurons).

4.3.5 Classifier time-performance

In order to investigate how the classifier performance changes as output events are observed
over time, we simulate the use case where classifier is asked to update its prediction whenever a
new output event occurs by comparing with the embeddings of the training set. This procedure
provides a valuable insight into the prediction latency. Figure 4.8 shows the class-averaged
classifier accuracy for models trained with different encoding schemes. Interestingly, while the
classifier performance of the binary and grayscale models roughly correlates with the overall
number of observed output spikes, the performance for the black&white model stops improving
quite early and reaches its maximum only after observing a small number of late events. If
we consider the maximum-accuracy performance of the model as its steady-state, then we
find that the black&white model achieves steady-state about 45% later than the other models.
More broadly, the results obtained for the three experimental settings vs. the number of output
neurons are summarized in Figure 4.9. Interestingly, the black&white models were consistently
slower than their binary and grayscale counterparts, up to about 37% for 50 output neurons.
This analysis was restricted to models with up to 50 output neurons as conducting it for larger
models becomes prohibitively time-consuming.

Overall, the model time-performance curves show that the quality of class label prediction
increases over time as more output events are observed. A similar classifier accuracy vs. time
study was conducted by Diehl et al. [157] by describing a rate-coding, artificial-to-spiking
neural network conversion scheme. They report that the steepness of the time-accuracy curve
depends on the network structure and the input signal properties. Our results seem to give

4.3. Exploring the properties of the Siamese SNN 127

1 2 3 4 5 6 7
0.00

0.25

0.50

0.75

1.00

Cl
as

s-
av

er
ag

ed
cla

ss
ifi

er
 a

cc
ur

ac
y

1 2 3 4 5 6 7
Time [τsyn]

0.00

0.25

0.50

0.75

1.00

Ou
tp

ut
 sp

ik
e

tra
in

 C
DF

black&white-10 binary-10 grayscale-10

Figure 4.8: Top row: the change in class-averaged classifier accuracy over time for three models trained
with 10 output neurons. Bottom row: the cumulative distribution functions (CDF) of output spike-times
for all test set examples, regardless of class labels. Thick vertical lines denote the time when each model
reaches its steady-state performance.

1 2 3 5 7 10 20 30 50
Number of output neurons

3

4

5

6

Ti
m

e-
to

-s
te

ad
y-

st
at

e
pe

rfo
rm

an
ce

 [τ
sy
n]

black&white binary grayscale

Figure 4.9: The observed relationship between the number of output neurons and the time-to-steady-state
for models trained under the three different experimental settings.

128 Chapter 4. Siamese Spiking Neural Network

further proof to their conclusions, although we did not vary the network structure.

4.4 Applications – CREDO artefacts rejection

The preliminary experiments on the benchmark MNIST dataset gave us an insight into the
properties of the proposed model, as well as reasonable initial settings for hyperparameter
tuning. In order to evaluate the algorithm on more challenging, real data, we apply it to images
acquired by the CREDO experiment. The Cosmic Ray Extremely Distributed Observatory
(CREDO) is an international research initiative aimed at observing high energy cosmic ray
particles [205]. The associated Android/iOS application enables the registration of muons with
smartphone devices. The ubiquity of the CREDO infrastructure entails virtually no control
over the detectors’ working conditions. As such, it is imperative to design a mechanism to auto-
matically differentiate images of signal from artefacts. This is a subtype of the same/different
discrimination-type machine learning problem to which the Siamese neural network model is
suited for. Furthermore, the region of interest (ROI) of each CREDO image, or the part that
contains the actual information about the detected object, is quite small relative to the size of
the image. This means that models processing this type of data should avoid spending compu-
tational resources on processing the parts of the image which effectively convey no information.
We have shown in the previous Section that the Siamese SNN is capable of processing sparse
data. Overall, the type of the research problem as well as the properties of the CREDO dataset
present an opportunity to evaluate the proposed Siamese SNN approach on nontrivial data.

4.4.1 CREDO experiment description

The Cosmic Ray Extremely Distributed Observatory (CREDO) is a global research consortium
running several projects related to the observation of cosmic rays (CR) with a particular stress
put on the Extensive Air Showers, i.e., jets of secondary particles initiated in the atmosphere
by the high energy primary particles. This research initiative operates according to the citizen
science paradigm, with most of the data collected from smartphones running a dedicated
mobile application. The CREDO infrastructure registers large amounts of potential hits but
only a fraction of them can be attributed to the particles of interest (mostly muons). To
single out the genuine particle hits, effective on-line or off-line triggers are a must [206]. The
CREDO data analysis is mainly concerned with muon hits since the characteristic features make
them easily distinguishable from other types of radiation. In most cases they are observed as
dots (when they hit the CMOS array almost vertically) or straight lines (when they impinge at
a certain angle). Less frequently than muons one can register either curvy or forking particle
tracks. They are of special interest as they can be attributed to either deflection or decay of the

4.4. Applications – CREDO artefacts rejection 129

original particle within the CMOS array. The seemingly straightforward classification of hits
and their distinguishing from artefacts is hindered by both smartphones’ hardware (varying the
CMOS array densities) and software (denoising algorithms implemented in modern smartphone
cameras). These factors make the artefact rejection and signal classification a difficult and
computationally challenging task where machine learning methods are the natural choice [207].
Leveraging the large number of smartphones running the CREDO Detector mobile application
one can study the correlations among observations performed in areas corresponding to the
typical sizes of atmospheric showers, i.e., about 1 km.

Application of the CMOS sensors for the cosmic ray detection with the CREDO Detector
mobile application is based on the same working principle that governs the operation of silicon
detectors in high energy experiments [208], i.e., the collection of charge induced in the depleted
zone by a passing particle. The crucial difference between sensors used in the laboratory
environment and those mounted in smartphones is that the latter are primarily designed to
register the visible light. And so, to use them as detectors of the corpuscular radiation, the
access of light has to be cut off by tightly covering the camera lens. But even then, the sensor
is subject to some level of thermal and electric noise. The detection of cosmic ray signal
is manifested by bright flashes occurring on average about once an hour in the image frame.
The luminosity of the array region affected by a particle impact is higher than the noise level.
The particle-related flashes are either elliptical in shape (up to about 10 pixels in diameter) or
longitudinal with a width of several pixels and up to 30 pixels in length. The frequency of these
flashes is compatible with the average secondary muon flux measured by other experiments.

The CREDO Detector mobile application has two operational modes, the initial calibration
mode and the ongoing detection mode [205]. In the calibration mode the application collects
statistics from 500 frames and calculates the thresholds of the detection. In the detection mode
the application is acquiring, collecting, and analyzing data from detectors. In this mode two
steps are executed. Firstly, the algorithm verifies the proper camera covering by integrating
the frame luminosity. The frame that passes this test is considered as signal detection. In the
second step the information about the detection is sent to the server. The relevant part of the
frame is cut out and transformed into a 60 × 60 pixel image around the center of the mass of
the hit. The image is sent to the server along with other data collected by the application. A
single bright cosmic ray flash recorded by the typical HD camera (1280 × 720) usually consists
of no more than 100 pixels, whereas an image containing multiple flashes consists of about
300 pixels that are brighter than the threshold, which is equivalent to 0.01% and 0.03% of such
a frame, respectively.

A subset of the CREDO dataset is available publicly.b This dataset – the focus of our
bThe dataset is available at https://github.com/credo-ml/cnn-offline-trigger/blob/main/data-set.zip

https://github.com/credo-ml/cnn-offline-trigger/blob/main/data-set.zip

130 Chapter 4. Siamese Spiking Neural Network

(a) spot (b) track (c) worm (d) artefact

Figure 4.10: Selected examples from the CREDO dataset. Images (a)-(c) represent a useful signal.

research – consists of 1232 images of a useful signal: 535 dot patterns (“spots”), 393 straight line
patterns (“tracks”), and 304 forking patterns (“worms”). Additionally, it contains 1122 images
of artefacts. Figure 4.10 presents an example of each signal type and an artefact. It is clear that
the effective ROI of the image is a fraction of the total image area.

4.4.2 Data preprocessing

We preprocess the CREDO data by following the scheme outlined in [206]. The values of
all 60 × 60 × 3 pixels images are summed across the three color channels, which removes
redundant information carrying no physical interpretation. Next, for every image a separate
threshold is computed as

𝛾𝑖 = min
(
100, 𝑏𝑖 + 5𝜎𝑖

)
, (4.16)

where 𝑏𝑖 is the average brightness of the 𝑖-th grayscale image, and 𝜎𝑖 is its standard deviation.
All pixels below the threshold are set to zero. As an additional, final preprocessing step that
was not present in the reference paper we perform min-max scaling on the images to remove
the bias that may be associated with an absolute brightness level (i.e., one class having images
that are on average brighter than others). The resulting set of images has a very small effective
ROI compared to the image size, with on average almost 90% of pixels being equal to zero.

In order to train a spiking neural network, we considered only the binary and grayscale
encoding types as valid strategies, as only these two coding schemes resulted in models with
sparse activity in the preliminary MNIST experiment. In addition to the Siamese SNN, a
nonspiking network (denoted ANN) was trained as a baseline reference. Both the SNN and
ANN models had the same 3600-256-256-10 architecture which corresponds to about 9.9 · 105

parameters. Setting the dimensionality of the last layer to 10 is once again a direct follow-up of
the MNIST study which suggested a good compromise between classification performance and
desirable properties (sparsity, time-to-steady-state). The set of hyperparameters used to train
the models is presented in Table 4.3.

The class labels were assigned according to the original study [206]. Merging the labels
for spots, tracks and worms into a joint “signal” class, and leaving the “artefact” set of images

4.4. Applications – CREDO artefacts rejection 131

Table 4.3: The set of hyperparameters used to train the models on the CREDO dataset. Both models
were presented with the same number of training examples over the course of training. The value of the
synaptic regularization strength varies depending on the current training epoch.

ANN Siamese SNN
learning rate 10−3 10−3

batch size 32 64
num epochs 40 40
steps per epoch 100 50
𝐿2 regularization 𝜆 10−3 10−3

synaptic regularization n/a
epochs 1-12: 105

epoch 13-40: 10−2

synaptic time constant [a.u] n/a 1
triplet loss margin n/a 10−1

intact results in 1232 examples of the “signal” class and 1122 examples of “artefacts”. Given
the small training set size relative to the number of parameters in the network, we opt to use
data augmentation:

• horizontal flip,
• vertical flip,
• rotation by a random angle sampled from [−45◦, 45◦] such that pixels of the rotated

image which do not correspond to any pixel of the image prior to the affine transform are
set to the value of the nearest border pixel.

Augmentations are applied in a random order, each one with probability 0.5. Note that for
the SNN the data augmentation is applied before the conversion to the spiking domain. Finally,
the training procedure of the two models is repeated 25 times by sampling the training-test split
according to a repeated stratified k-fold validation protocol (5 rounds with 5 folds each). Each
training minibatch was balanced in terms of class labels.

4.4.3 Results & discussions

The sparsity of the input data and the rich information carried by the pixel intensity levels turned
out to be prohibitive in training the SNN with binary encoded inputs. Therefore, any further
mentions of the Siamese SNN model properties and performance refer only to the grayscale
model. We found that in order to successfully train the SNN models on the CREDO data it was
important to substantially change the synaptic regularization parameter 𝛾 (4.4) during training
(Figure 4.11). Initially 𝛾 is set to a large value of 105 in order to guide the model towards a

132 Chapter 4. Siamese Spiking Neural Network

0 10 20 30 40
Number of training epochs

0.00

0.25

0.50

0.75

1.00

Tr
ai

ni
ng

 m
et

ric
 v

al
ue

10−2

100

102

104

Sy
na

pt
ic

re
gu

la
riz

at
io

n
lo

ss

Triplet loss
Ratio of active triplets

Network sparsity index
Synaptic regularization loss

Figure 4.11: Training measures monitored during training of the Siamese SNN. Dashed vertical lines
denote the epochs in which the synaptic regularization parameter changed.

solution that allows the input spikes to propagate through all layers. Once the ratio of active
triplets (4.8) plateaued – which implies that the network learned how to solve the “easy” triplets
– the value of the parameter 𝛾 is decreased to 10−2. This stage of training emphasized solving
the actual task without focusing too much on ensuring that all neurons produce spikes. As a
result, the network sparsity index (3.69) (averaged over training minibatch examples) steadily
increased from the achieved local minimum. The devised strategy shows the importance of
correctly choosing the relative impact of the task-specific loss component (triplet loss) and the
synaptic regularization on the minimized total loss function.

A summary of the classification performance of the SNN and ANN models compared to
prior results is presented in Table 4.4. For the Siamese model the labels were predicted with
a k-NN classifier for 𝑘 = 7. Both of our models achieved similar accuracy scores for signals
and artefacts separately, which may be a result of ensuring class balance within each training
batch. We note that both models were outperformed by the CNN-based architecture, although
the difference is relatively small. Nevertheless, extending this work to convolutional spiking
neural networks might be worth considering as part of further research.

Across all trained Siamese SNN models we noticed that what the network considers “most
similar” does not necessarily align with the perceptual similarity between a pair of images. This
can be observed by comparing sets of images using a trained Siamese network, which makes
the model return images that are most similar to a given query image. Figure 4.12 presents
an example of querying the model using images from a test set against all images that – for
this specific model – were a part of the training set. During training images of spots, tracks,
and worms were all treated as a catch-all “signal” class; therefore, unsurprisingly, the model is

4.4. Applications – CREDO artefacts rejection 133

Table 4.4: Classifier performance on the CREDO dataset for the binary signal/artefact classification
problem (best reported results from each paper).

Model
Overall Accuracy

± Std Dev
Signal Accuracy

± Std Dev
Artefact Accuracy

± Std Dev

Random Forest [206] 97.07 ± 0.77 99.17 ± 0.73 94.76 ± 1.39
CNN+DWT [206] 98.93 ± 0.39 98.99 ± 0.63 98.86 ± 0.67
ANN (our) 97.70 ± 0.69 97.56 ± 1.05 97.86 ± 1.00
Siamese SNN (our) 96.35 ± 0.74 96.20 ± 1.35 96.52 ± 1.36

a) b)

Figure 4.12: Examples of similar images of the CREDO data identified by the Siamese SNN for
a) signals and b) artefacts. Each row corresponds to a different comparison, and is comprised of a test
set image (left-most column), followed by top-7 most similar images from the training set. Best viewed
in color.

unable to distinguish between them. Similarly, it might be difficult to understand what are the
common features of the queried artefact images. This suggests that the proposed Siamese SNN
suffers from the same limitations with respect to prediction interpretability as a regular ANN.

In order to demonstrate how the SNN is able to adapt to the properties of the input data, we
compute the network sparsity index (3.69) separately for both class labels, and depending on
whether the label predicted by the model matches the ground truth. The results are presented in
Figure 4.13. For images of useful signal the network requires only a fraction of its neurons to
produce a correct prediction. This stems from the fact that those images have a very small ROI,
which when converted to the spiking domain results in a sparse vector. Conversely, artefacts

134 Chapter 4. Siamese Spiking Neural Network

0.0 0.5 1.00

1

2

3

4

True positive

0.0 0.5 1.00.0

0.4

0.8

False positive

0.0 0.5 1.00.0

0.4

0.8

False negative

0.0 0.5 1.00
4
8

12
16

True negative

Network sparsity index

Fr
ac

tio
n

of
 te

st
 se

t e
xa

m
pl

es
 [%

]

Figure 4.13: Siamese SNN network sparsity index empirical distributions estimated for all 25 experi-
mental training runs. Examples with a ground truth label of a signal are denoted as positive.

have many more active pixels, and so the model uses more neurons to process each example.
Interestingly, in all four cases the network sparsity index has a clear peak at zero, regardless of
the ground truth class label. This observation, coupled with the fact that in both the false positive
and false negative scenarios no peaks are evident for higher values of the network sparsity index,
suggests that the examples from the set of difficult training triplets (i.e., the ones that actually
contribute to the training loss), are processed with almost all neurons. Unsurprisingly, given
that the model did not reach zero training loss, this results in the region of high test set error.

Finally, we analyzed the time-performance of the spiking neural network model separately
for each class label (Figure 4.14). The model seems to reach the steady-state performance
for artefacts significantly earlier than for the signal class. In fact, according the the output
spike train CDF, the steady state is reached before even a fraction of spikes that form the class
embedding for signals is generated. This suggests that the classes are well-separated in the time
domain, which unfortunately means that the best overall accuracy is achieved quite late, after
the steady state is reached for the other class. Note that the change in the classification accuracy
over time closely follows the spike train CDF for that class. This matches the pattern observed
previously for the MNIST dataset (Figure 4.8).

4.5. Summary 135

1 2 3 4 5
0.00
0.25
0.50
0.75
1.00

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

1 2 3 4 5
Time [τsyn]

0.00
0.25
0.50
0.75
1.00

Ou
tp

ut
 sp

ik
e

tra
in

 C
DF

signal artefacts

Figure 4.14: Top row: the change in classification accuracy over time per class label for the Siamese SNN
models. Bottom row: the cumulative distribution functions (CDF) of output spike-times for all test set
examples. Thick vertical lines denote the time when each model reaches the steady-state performance.

4.5 Summary

In this Chapter we presented a novel supervised training scheme for multilayer Siamese spiking
neural networks which optimizes the Earth Mover’s Distance between output spike trains. We
built the network using Integrate-and-Fire neurons that are tuned to respond to precise timing
of input events. In contrast to existing works that adapt the Siamese networks to the spiking
context, our Siamese SNN is optimized directly in the spiking domain, rather than be a product
of converting an existing neural network to the spiking domain. Additionally, we opt to encode
information using single events instead of bursts of spiking activity.

The model was evaluated on image data converted into the spiking domain using a novel
input coding scheme based on the concept of implicit information carried by events in the
spiking domain. This means that some data inputs are represented by a lack of any event rather
than a new event category. We find that for the MNIST data the proposed methodology is
robust to the change in output layer dimensionality, which can be tuned to the task at hand. This
training procedure results in models which take less time to make high-accuracy predictions
and process signals using only a small subset of hidden layer neurons firing in response to
the input event stream (binary, grayscale), compared to models trained with an explicit event
encoding (black&white). Importantly, these model properties held true across all tested output
layer dimensionalities. As a concrete example, the black&white-10 model reached an F1-score
of 0.9480 using almost all neurons to make predictions, whereas the binary-10 model achieved
a slightly lower F1-score of 0.9410; however, it encodes information using only 15% of all

136 Chapter 4. Siamese Spiking Neural Network

hidden layer neurons, and is significantly faster to reach its steady-state performance. Further
investigation is required in order to determine whether the observed accuracy-sparsity trade-off
is a result of our training procedure, or whether it is an inherent property of spiking neural
networks.

Training the Siamese SNN model on a more challenging dataset of the CREDO experiment
images required carefully selecting the value of the synaptic regularization parameter and
changing it as training progressed. Doing so has forced the model to focus on ensuring spike
propagation through the model during the initial training stage, and minimizing the task-related
loss only after the regularization component has been relaxed. We hope that this insight
will be valuable in further research studying such networks. Contrary to the results obtained
on MNIST, we were unable to successfully train the binary model, which might be a corollary
of almost 90% of input pixels (on average) being zero, as well as due to discarding information
present in different pixel intensity levels when transforming the image to the spiking domain.
The grayscale model achieved a performance level similar to the nonspiking ANN baseline,
although they were both outperformed by a CNN-based solution. Nevertheless, the trained
Siamese SNN model has shown the ability to adapt to the properties of the input data by using
a fraction of all neurons to process examples of the “signal” class, whereas using almost all of
them to process “artefacts”.

Note that while the proposed approach is cast in the context of image classification, it
can be readily applied to problems that are solvable with regular (nonspiking) Siamese neural
networks, such as object tracking or change point detection. Naturally, the model requires that
the data either exists in or can be converted to the spiking domain. This spike-domain-centric
design makes the model suited towards analyzing sparse and irregular patterns present in the
spiking data. Conversely, it is difficult to predict how the model will perform compared to
alternative methods when the underlying data exists in the nonspiking domain as the conversion
procedure creates a spike sequence that is much more parsimonious than the original data (in
this case: static images). Investigating whether this procedure is of any benefit (by removing
redundant information) warrants further research.

It must be noted that both the MNIST and CREDO datasets contain images of a relatively
small size, which allowed us to train models with the spiking analogue of the dense layer
introduced in Chapter 3. However, this might become impractical for images of larger size.
Adapting the proposed spiking neuron to construct a convolutional layer is surely worth further
investigation. As an added benefit, the use of CNN-based architectures increases the inter-
pretability of model predictions for image data. Lastly, combining such developments with the
MIMO framework presented in Section 3.2.4 would allow applying the model to image streams
instead of static images.

Chapter 5

Event Sequence Classification for
Multivariate Time Series

Event sequence data is a natural representation for signals in which the information is carried
only by a set of predefined events, such as banking or social media activity. There is no
information in between the two events. However, in some cases the event sequence is created
by monitoring some complex phenomenon in which the underlying state of the system may
have changed between two different events. To illustrate this, take for example an electronic
health record in a hospital admission [8]. The efficiency of patient’s state monitoring and
treatment is conditioned on the frequency of events registered in the record. However, given the
budget constraints, continuously monitoring the state of all patients in a facility at an arbitrary
frequency is unfeasible. Therefore, it is crucial to make informed decisions on when to create
a new event. In fact, the monitored phenomena need not be complex for this scenario to occur.
Event-sensors aim to improve upon typical sensors sampling an analog signal at a uniform rate
by focusing only on the informative data. Such event-driven sampling schemes additionally
offer wide dynamic range and low latency in asynchronous communication.

In this Chapter we focus on analyzing the performance of the SNN models trained on event
data obtained by different signal-to-spike conversion schemes. In contrast to Chapter 4 which
described conversion of static images to events, here we operate on multivariate time series
data. The presented approach is specifically applied to data originating from an Intelligent
Transportation System (ITS) sensor for vehicle monitoring. Notably, this methodology makes
no assumptions about the underlying signal, ensuring that it can be readily adapted to other
data domains. In Section 5.1.1-5.1.2 we introduce various event-triggered sampling schemes
and provide details about the analyzed signal, respectively. Then, Section 5.2 describes the
proposed approach. The solution is split into two parts. Section 5.2.1 shows how to choose

137

138 Chapter 5. Event Sequence Classification for Multivariate Time Series

the signal encoding such that information important for the downstream classification task is
preserved. These insights are followed-up upon in Section 5.2.2, which summarizes the results
of training the SNN models on this dataset converted into the spiking domain with the chosen
encoding schemes. In our analysis, in addition to the absolute classification performance, we
also focus on the efficiency of the solution by relating the model performance with the number
of events produced by an event-triggered sampling scheme.

5.1 Introduction

5.1.1 Event-triggered sampling

Conventional data acquisition of bandlimited signals applies uniform sampling, with the data
sampling frequency selected according to the Nyquist–Shannon theorem. This means that in
order to perfectly reconstruct the signal from its samples, the sampling rate must be twice the
highest expected spectral frequency component of the signal (unless some additional informa-
tion about the signal is available, as in e.g., compressed sensing [209]). However, this is far from
optimal when signal’s spectral properties significantly change over time, e.g., by alternating
low- and high-frequency signal content, or even lacking any amplitude changes altogether. This
is undesirable in applications that rely on efficient use of available resources. In such scenarios
non-uniform sampling techniques can be employed [210].

Event-triggered sampling is one such strategy that attempts to address these limitations by
making the sampling frequency adapt to the signal itself (Figure 5.1). It does so by letting events
dictate the sampling instances, i.e., samples are generated only when the signal satisfies some
pre-defined event [211]. Fortunately, the triggering condition definition is flexible, allowing
event-based sampling to comply with a wide range of design objectives. Employing this strategy
in signal acquisition systems removes the need for a sampling clock, which is a significant energy
consumer in uniform sampling strategies. Additionally, moving the quantization process from
the amplitude to the time domain is in line with modern electronics manufacturing technology
that promotes fast circuit operation but makes the fine quantization of the amplitude difficult at
low supply voltages [211].

An important class of event-based criteria is the reference-crossing sampling. The signal is
sampled whenever it intersects with a predefined reference function. The most popular sampling
scheme of this type is the level-crossing sampling which defines crossing some amplitude level
as the event trigger [212, 213]. In practical applications multiple levels are used. They can be
positioned arbitrarily, although the typical solution is to set them at uniformly distributed levels
along the amplitude range of the signal (Figure 5.2a). The rate of events is directly proportional

5.1. Introduction 139

−1

0

1

Am
pl
itu

de

a)

0.0 0.2 0.5 0.8 1.0
Time

Cl
oc
k

−1

0

1

Am
pl
itu

de

b)

0.0 0.2 0.5 0.8 1.0
Time

Ev
en

ts

Figure 5.1: Comparison between periodic (left) and event-triggered (right) sampling schemes. The
latter sampling scheme produces two event sequences, separately for the rising and falling slopes of the
signal.

to the variability of the signal being sampled, with higher rates corresponding to periods when
the signal varies quickly. It is therefore possible to estimate the local signal bandwidth based
on the event counts [214].

Reference-crossing schemes also encompass level-crossing sampling of the transformed
input signal, such as its derivative [215]. A special case of this is the extremum sampling,
which is a one-level, zero-crossing sampling scheme of the signal derivative [216]. Moreover,
the reference signal need not be constant over time [217]. Figure 5.2b-c shows examples of
these reference-crossing sampling criteria.

A different category of event-triggering criteria that removes the need for a reference signal
relies instead on temporal variations of the signal amplitude. Send-on-delta scheme [218]
samples the signal whenever its value changes by a threshold ∆ (Figure 5.2d). Intuitively, the
magnitude of ∆ should be selected so that the signal’s variability is adequately captured while
keeping the number of samples low. Several extensions and modifications of this algorithm
have been proposed. Send-on-delta with linear prediction [219] samples the signal only when
its actual value deviates from the value predicted based on its history by at least ∆. Doing so
reduces the number of samples that need to be transmitted. Furthermore, send-on-area [220]
and send-on-energy [221] schemes trigger sampling if the signal’s integral (or energy) changes
by some threshold value, relative to the most recent sample. These criteria alleviate the issue
present in the send-on-delta scheme when samples are rarely generated because all amplitude
variability is between the threshold ±∆ (Figure 5.2e)

In all methods discussed so far the produced samples are implicitly associated with the
signal amplitude at the time of the measurement. An interesting concept that uses time as
the sole source of information about the signal is the time encoding machine (TEM) [222].
These are real-time asynchronous circuits capable of encoding the signal in such a way that

140 Chapter 5. Event Sequence Classification for Multivariate Time Series

0.0 0.2 0.5 0.8 1.0
t

−1.0

−0.5

0.0

0.5

1.0

x(
t)

a)

0.0 0.2 0.5 0.8 1.0
t

−1.0

−0.5

0.0

0.5

1.0

x(
t)

b)

0.0 0.2 0.5 0.8 1.0
t

−1.0

−0.5

0.0

0.5

1.0

x(
t)

c)

0.0 0.2 0.5 0.8 1.0
t

−1.0

−0.5

0.0

0.5

1.0

x(
t)

Δ

Δ Δ

Δ

Δ

Δ

d)

0.0 0.2 0.5 0.8 1.0
t

−1.0

−0.5

0.0

0.5

1.0

x(
t)

δ

e)

0.0 0.2 0.5 0.8 1.0
t

−1.0

−0.5

0.0

0.5

1.0

x(
t)

f)

0

dx
/d
t

y(
t)

-Vthr

0

Vthr

y(
t)

Figure 5.2: Examples of event-triggered sampling criteria. Black marker symbols denote different event
types produced by the encoding. a) Level-crossing. b) Extremum sampling. c) Sine-wave-crossing.
d) Send-on-delta. e) Send-on-area. f) LIF time encoding machine.

5.1. Introduction 141

the amplitude information can be recovered. It has been shown that neural models such as the
(leaky) Integrate-and-Fire neuron [223, 224] or the Hodgkin-Huxley neuron [225] can be used
in the TEM circuit to encode the signal. For instance, the events produced by the LIF-TEM are
recursively defined as

𝑡𝑛 := min
{
𝑡 > 𝑡𝑛−1 :

1
𝜏int

∫ 𝑡

𝑡𝑛−1

exp
(
− 𝑡 − 𝑠
𝜏leak

)
[𝑥(𝑠) + 𝑐] 𝑑𝑠 = 𝜖𝑉thr

}
(5.1)

starting from 𝑡0 = 0, where 𝜏int > 0, 𝜏leak > 0, 𝑐 ≥ 0, 𝑉thr > 0 are known constants, and
𝜖 = {−1, 1}. 𝜏int is the integration constant, 𝜏leak is the leak constant (controlling how quickly
the TEM is discharged in the absence of new information), and 𝑐 biases the signal away from
zero. Figure 5.2f presents an example of this encoding. Note that the LIF-TEM produces two
types of events, depending on the sign of the definite integral in (5.1).

Overall, the main focus of research in the field of event-triggered sampling is on recovering
the original signal from its samples. While the general theory of signal reconstruction from
non-uniform samples can be applied to any event-based sampling method [226, 227, 228],
the development of techniques dedicated to specific encoding types aims to further reduce the
number of generated samples by exploiting known signal properties [212, 214, 229]. Analyzing
different event-sampling schemes through the lens of signal reconstruction is one possible way
of assessing their usefulness and robustness in solving real tasks. However, not all applications
need to reconstruct the signal. We argue that it is also important to analyze these methods
in terms of how the produced signal representation impacts the performance and properties
of a machine learning model operating on event data. We find that this topic is insufficiently
explored in the literature.

5.1.2 Inductive loop vehicle magnetic profiles (VMP)

The goal of Intelligent Transportation Systems (ITS) is to promote efficient utilization of
existing transportation facilities by applying accurate traffic data acquisition technologies in
order to monitor and route traffic flows. Despite recent advances in the development of
different sensor technologies, the inductive loop (IL) sensors are by far the most commonly
used sensor in modern traffic control systems [230]. This technology is characterized by low
installation costs, robustness with respect to weather conditions such as rain, fog or snow, and
flexible design that is able to accommodate different applications. Systems based on IL sensors
are capable of vehicle classification [231, 232, 233, 234, 235], vehicle re-identification and
tracking [236, 237, 238, 239], speed estimation [240, 241, 242], as well as wheel and axle
detection [243, 244, 245].

The scientific principles underlying the inductive loop sensor operation are well understood.
At minimum, the IL detector consists of two components: a wire loop with one or more turns

142 Chapter 5. Event Sequence Classification for Multivariate Time Series

mounted on or embedded in the roadway pavement, and a controller cabinet that houses an
electronics unit [230]. When a conducting metallic mass passes over the IL connected to an
oscillating circuit, the currents induced in the object change the magnetic field distribution and
the loop inductance [246]. These dynamic interactions between the loop and the vehicle can
be monitored and observed as impedance changes. This produces a waveform signal known as
the vehicle magnetic profile (VMP).

Depending on the circuit design, different components of the VMP waveform can be
extracted. This impacts their applicability to the various traffic measurement problems. The
LC-generator-based circuits allow measuring only the change in the inductive reactance of
the loop [244]. Conversely, systems using the AC-bridge oscillators measure impedance
changes, however, obtaining precise measurements of the real (R-VMP) and imaginary (X-VMP)
impedance components of the VMP waveform is time consuming [243]. A microcontroller-
supported, Maxwell-Wien-bridge-based solution that uses vector voltmeter measurements is
capable of preserving both the R-VMP and X-VMP components [247].

Figure 5.3a presents a quad loop, four-channel VMP measurement system proposed in [248].
It consists of two standard loops (IL1, IL3) and two slim loops (IL2, IL4) arranged in a series.
The two inductive loop types differ in the produced magnetic field distribution. The standard
loops generate a spread field that encompasses many vehicle chassis components. Conversely,
the magnetic field of the slim IL sensors is spatially less spread. This implies that the standard
loop design is better suited towards generic tasks, whereas the slim loops are preferable for axles
identification and wheel rim detection [243]. Using two loops of each type instead of a single
one introduces redundancy that makes the system more robust against signal interference, and
makes estimating some traffic parameters (such as vehicle speed) simpler [249]. Finally, three
different excitation frequencies are applied to each channel (Figure 5.3b-e). Simultaneous multi-
frequency measurement improves the system robustness against noise, reducing the likelihood
that the poor signal quality prevents processing in downstream tasks. We use data obtained
from the quad loop system in our analysis.

5.2 Vehicle type identification based on the VMP signal

Marszałek et al. [250] proposed a system capable of inferring the carry load of a vehicle based
on the magnitude of the VMP signal. Given that these signals are very similar to one another
when recorded for the same vehicle model, but are quite distinct for different models, this load
estimation is a two-step procedure. First, the measurement system is calibrated for a given
vehicle model to determine a load-dependent parameter by observing the VMP signal obtained
at different loads. This is repeated for every vehicle expected to be measured which results in a

5.2. Vehicle type identification based on the VMP signal 143

a)

IL1 IL3

IL2 IL4

MU VMPs

0.0

0.2

R-
VM

P
[Ω

]

b) IL1

10 kHz
18 kHz
26 kHz

0.0 0.5 1.0 1.5
Time [s]

−2

0

X-
VM

P
[Ω

]

0.00

0.02

R-
VM

P
[Ω

]

c) IL2

6 kHz
14 kHz
22 kHz

0.0 0.5 1.0 1.5
Time [s]

−0.1

0.0

X-
VM

P
[Ω

]
0.0

0.2

R-
VM

P
[Ω

]

d) IL3

12 kHz
20 kHz
28 kHz

0.0 0.5 1.0 1.5
Time [s]

−2

0

X-
VM

P
[Ω

]

0.00

0.02
R-

VM
P

[Ω
]

e) IL4

7 kHz
16 kHz
24 kHz

0.0 0.5 1.0 1.5
Time [s]

−0.1

0.0

X-
VM

P
[Ω

]

Figure 5.3: a) Diagram of the quad loop VMP measurement system. The signal is registered by the
measurement unit (MU) when a vehicle passes over the four inductive loop sensors. b-e) Exemplary
VMP profiles acquired by the quad loop VMP measurement system, divided into separate IL sensors,
VMP components and loop excitation frequencies. Note that signals originating from the IL sensors of
the same type (IL1-IL3; IL2-IL4) are slightly shifted in time. Furthermore, the loop excitation frequency
impacts the signal magnitude, but does not significantly change its characteristic features.

creation of a vehicle model reference database. Then, during inference, a newly-acquired VMP
signal is compared to all records in the reference database in order to determine the identity of
the vehicle. Having found a match, the carry load can be estimated. This process exemplifies
the importance of vehicle model detection in the VMP-based signal processing pipeline.

It is unlikely that the reference database contains exemplary measurements for all vehicles.
In fact, it can be argued that some vehicle types (such as bicycles) should be explicitly excluded
from the database to avoid unnecessarily comparing them with the records in the reference
set. In an event that the system does support multiple vehicle types, a presence of a filtering
model upstream would have the benefit of allowing specialized models for vehicle model
detection, separately for each type. For these reasons we focus our efforts on the vehicle type
identification problem. Note that the approach described hereinafter can also be used to train
a neural-network-based vehicle model detector, provided that enough training data per vehicle
model is available.

144 Chapter 5. Event Sequence Classification for Multivariate Time Series

To conduct our study, we used the data provided by [250]. The entire dataset contains
3328 records, split into five classes as follows: motorcycle (24.32%), bicycle (20.42%),
car (15.02%), delivery van (14.11%) and truck (6.61%). Each record stores simultaneous
multi-frequency measurements of the real and imaginary components of the VMP signal (de-
scribed earlier in Section 5.1.2). We take a subset of channels, leaving only four of them
for further processing (the R-VMP signals registered by sensors at their lowest excitation fre-
quency). This reduces the scope of our analysis and encourages further research that considers
the full extent of the available data.

In order to process the VMP data with a spiking neural network, it is necessary to first
encode the multivariate time series into event streams using one of the methods introduced in
Section 5.1.1. The experiments conducted on Twitter, MNIST and CREDO data have shown
that the choice of an encoding scheme impacts the number of events observed by the network, as
well as the effective number of input event types. Those factors, in turn, influence the properties
of the trained model. We can expect similar findings on the VMP data. Note that assessing
the SNN properties with respect to the chosen encoding type and its parameters similarly to
our prior analyses would require training the model from scratch many times over. Given the
comparatively larger size of the VMP dataset, it is clear that doing so would be time- and
compute-intensive, especially when the SNN-specific hyperparameters are also considered in
the evaluation process.

For these reasons, we explore a more pragmatic approach. Rather than jointly analyzing
the impact of spike encoding on the model performance, we split the process into two stages.
In the first stage we focus solely on finding a set of encoding-specific parameters that preserves
information that is important for time series classification. Afterwards, the VMP signals are
preprocessed according to the found parameters, which can then be used to train the models.
By dividing the hyperparameter optimization process into two parts we reduce the overall time
it takes to arrive at a good-enough solution. Of course, it can be argued that training the SNN
end-to-end with encoding optimization might ultimately lead to a better model. Nevertheless,
the proposed two-step procedure is more general by being independent of the SNN model
complexity.

5.2.1 Choosing the signal-to-spike encoding parameters

The main purpose of the research summarized in this Section was to find a set of encoding
parameters that preserves information about the underlying signal that is important for the
downstream classification task. We assume that the performance of one machine learning model
on some data might be indicative of the classification measure scores of another model on the
same data. Such relationship implies that changing the data source (e.g., due to preprocessing)

5.2. Vehicle type identification based on the VMP signal 145

leads to the same outcome in both models (an increase, reduction or no change of the model
performance relative to the baseline), but says nothing about the model performance in absolute
terms. Note that this need not be true for an arbitrarily chosen pair of models due to factors
such as model complexity, or whether they are general-purpose or specifically designed for a
given machine learning problem.

Let us consider the k-NN classifier approach. Its classification score provides an insight into
which encoding (i.e., preprocessing) parameters produce signal spaces with relatively higher
intra-class similarities with respect to the chosen (potentially parameterized) distance function.
Marginalizing-out the impact of the distance function parameters it is possible to infer which
encoding parameters lead to more robust signal spaces for classification problems. Therefore,
we can expect the SNN classifier to perform better on such event spaces in comparison to
randomly-selected ones. Naturally, this strategy is valid only when the choice of the spike
encoding parameters has a measurable impact on the k-NN classifier performance and – by
proxy – signals’ pairwise similarity. If that is not the case, and the k-NN classifier performance
is generally poor, then a different approach is needed.

A crucial part of this strategy is the choice of the distance function to assess event sequence
similarity. Given that the VMP signals are relatively short (on the order of a couple of seconds),
the metrics used in computational neuroscience research are appropriate. In Section 4.1.1
we introduced some commonly used similarity measures, with the Earth Mover’s Distance
described in greater detail in Section 4.2.1. The latter was used in the Siamese SNN training
objective due to its low computational complexity and being parameter-free. Unfortunately,
the EMD requires that the event sequences under comparison contain at most one event type,
the same in both sequences. There is no explicit formula for the EMD between event streams
composed of events of different types. While there exist some iterative approaches (most
notably those based on the Sinkhorn’s algorithm for entropically-regularized optimal transport
problem [251, 252]), we found them to be too computationally expensive in our experimental
setup and therefore a different distance measure was used.

5.2.1.1 Preliminaries

Due to its prominence in neuroscience, we opt to use the multi-neuron van Rossum dis-
tance [253] to assess the similarity of the VMP event sequences produced by spike-encoding
functions.a LetU =

{
u1, u2, . . . , u𝑃

}
andV =

{
v1, v2, . . . , v𝑃

}
be two populations of 𝑃 neur-

aThe van Rossum distance was originally defined for neural spike responses, therefore its formulation refers
to various (populations of) neurons. We adopt this terminology for consistency with previous works in the field,
noting that different “neurons” relate to “event types”, whereas “populations of neurons” intuitively correspond to
“sets of event types”.

146 Chapter 5. Event Sequence Classification for Multivariate Time Series

ons. Without a loss of generality, assume that each neuron produces 𝑛 spikes such that

𝑓 (𝑡, u𝑝) =
𝑛∑︁
𝑖=1

ℎ
(
𝑡 − 𝑢𝑝

𝑖

)
(5.2)

is a spike train with events u𝑝 =
{
𝑢
𝑝

1 , 𝑢
𝑝

2 , . . . , 𝑢
𝑝
𝑛

}
smoothed by a causal exponential kernel

ℎ(𝑡; 𝜏) =

0 𝑡 < 0

𝑒−𝑡/𝜏 𝑡 ≥ 0
(5.3)

(the spike train v𝑝 is defined analogously). Then, the multi-neuron van Rossum distance
betweenU andV is [254]

𝑑 (U,V; 𝜏, 𝑐) =

√√√
2
𝜏

𝑃∑︁
𝑝=1

(∫ ∞

0

��𝛿𝑝 ��2 𝑑𝑡 + 𝑐∑︁
𝑞≠𝑝

∫ ∞

0
𝛿𝑝𝛿𝑞𝑑𝑡

)
, (5.4)

where 𝛿𝑝 = 𝑓 (𝑡, u𝑝) − 𝑓 (𝑡, v𝑝) and 𝛿𝑞 is defined analogously. For a causal exponential
smoothing function this integral sum can be computed explicitly as

𝑑 (U,V; 𝜏, 𝑐) =

√√√ 𝑃∑︁
𝑝=1

(
𝑅𝑝 + 𝑐

∑︁
𝑞≠𝑝

𝑅𝑝𝑞

)
, (5.5)

with
𝑅𝑝 =

∑︁
𝑖, 𝑗

𝑒
−
���𝑢𝑝𝑖 −𝑢𝑝𝑗 ���/𝜏 +∑︁

𝑖, 𝑗

𝑒
−
���𝑣𝑝𝑖 −𝑣𝑝𝑗 ���/𝜏 − 2

∑︁
𝑖, 𝑗

𝑒
−
���𝑢𝑝𝑖 −𝑣𝑝𝑗 ���/𝜏 (5.6)

being the labeled line term representing the single-neuron van Rossum distance (i.e., a distance
between neurons that directly correspond to one another), and

𝑅𝑝𝑞 =
∑︁
𝑖, 𝑗

𝑒
−
���𝑢𝑝𝑖 −𝑢𝑞𝑗 ���/𝜏 +∑︁

𝑖, 𝑗

𝑒
−
���𝑣𝑝𝑖 −𝑣𝑞𝑗 ���/𝜏 −∑︁

𝑖, 𝑗

𝑒
−
���𝑢𝑝𝑖 −𝑣𝑞𝑗 ���/𝜏 −∑︁

𝑖, 𝑗

𝑒
−
���𝑣𝑝𝑖 −𝑢𝑞𝑗 ���/𝜏 (5.7)

is the summed population term representing the cross-neuron distance. Assuming that the
sequencesU,V are sorted, the computational complexity of (5.5) is on the order of 𝑃2𝑛2 and
can be reduced to 𝑃2𝑛 using a so-called markage trick [254]. The multi-neuron van Rossum
distance is visualized in Figure 5.4.

The double-sums in (5.6)-(5.7) denote the computation over all pairs of events between the
two spike trains. This means that these event sequences can have a different number of events
each. In fact, the measure is bounded even when one spike train is empty while the other is not,
and also when both event sequences are empty. This is important in our application because we
cannot make any assumptions about the number of events of each type produced by the spike
encoding functions.

5.2. Vehicle type identification based on the VMP signal 147

0 1 2 3 4 5
t

x[1]
a)

0 1 2 3 4 5
t

y[1]

0 1 2 3 4 5
t

0.0
0.5
1.0x1(t)

0 1 2 3 4 5
t

0.0
0.5
1.0y1(t)

0 1 2 3 4 5
t

−0.8
0.0
0.8

δ1= x1(t) − y1(t)

b)

0 1 2 3 4 5
t

−0.8
0.0
0.8

δ2= x2(t) − y2(t)

0.0
0.6
1.2

[δ1]2

0 1 2 3 4 5
t

0.0
0.6
1.2

[δ2]2

0.0
0.6
1.2

cδ1δ2

0 1 2 3 4 5
t

0.0
0.6
1.2

cδ2δ1

0 1 2 3 4 5
t

0.0
0.6
1.2[δ1]2+ [δ2]2

+2cδ1δ2

c)

x[2] y[2]

x2(t) y2(t)

Figure 5.4: Computing the multi-neuron van Rossum distance between two neuron populations X, Y
with two neurons each. a) The original spike trains of the two neuron populations, as well as their causal
exponential kernel-smoothed representations. b) Finding the labeled line ([𝛿1]2, [𝛿2]2) and summed
population (𝛿1𝛿2, 𝛿2𝛿1) terms. The van Rossum distance is symmetric, therefore in this scenario all
summed population terms are identical. Note the presence of a scaling factor 𝑐. c) The squared multi-
neuron van Rossum distance is proportional to the shaded area. The original spike trains are presented
for reference.

The multi-neuron van Rossum distance defined in (5.5) is parameterized by 𝑐 and 𝜏, allowing
it to model various phenomena observed in neuroscience. The mixing parameter 0 ≤ 𝑐 ≤ 1
weighs the importance of treating each neuron separately (𝑐 = 0) versus viewing the entire
population as a single-unit (𝑐 = 1). The decay constant 𝜏 influences the range of interspike
dependencies. For 𝜏 →∞ each individual spike contributes to the distance computed at every
subsequent spike. Conversely, for 𝜏 → 0 spikes impact only their direct neighborhood with
𝜏 = 0 causing the measure to count the number of coinciding events in the spike trains. These
properties show the versatility of this distance function. Unfortunately, this also means that the
choice of 𝑐, 𝜏 impacts the perceived (dis)similarity of spike trains produced by different spike
encoding functions.

In order to find the set of parameters for the encoding functions we conduct Bayesian
optimization using the Hyperopt software package [255]. For a pre-determined training and

148 Chapter 5. Event Sequence Classification for Multivariate Time Series

validation data split, the procedure can be summarized as follows:
1) Define the search space for the parameters to be optimized with Hyperopt. We constrain

the search space to the following set of probability distributions:
• level-crossing encoding: 𝐿 ∼ U {4, 16},

• send-on-delta encoding: ∆ ∼ U (0.02, 0.2),

• LIF encoding: 𝜏int ∼ U (0.05, 0.4); 𝜏leak ∼ U (0.2, 0.6); 𝑉thr ∼ U (0.2, 0.4),

• van Rossum distance: log (𝜏) ∼ U (−1, 1); 𝑐 ∼ U (0, 1).
This means that the search space is spanned by either three or five different parameters,
depending on the chosen spike encoding function. Note that the level-crossing encoding
is defined in terms of the number of levels and not their absolute amplitude due to the
signal preprocessing steps explained below.

2) Define the scoring function. As mentioned before, we choose the k-NN classifier accuracy
as the optimization criterion. For each individual record of the validation dataset the
classifier decision was determined by finding 𝑘 = 7 most similar signals from the training
dataset (with respect to the multi-neuron van Rossum distance) and assigning the class
label based on the results of majority voting. The number of nearest neighbors 𝑘 was
fixed in order to avoid introducing an additional parameter into the search space.

3) Run the Bayesian optimization process over 150 steps. Each step consists of sampling
a new set of parameters, extracting spike sequences from the original time series data,
evaluating the scoring function, and updating the parameter distributions based on the
history of scores conditioned on the parameters. Note that it is possible that the sampled
parameter set sometimes produces empty event sequences. Such failed runs have their
score set to −∞ and are excluded from further analysis.

Lastly, to check the robustness of the optimization procedure with respect to the data distribution,
we use the stratified 10-fold cross-validation. This results in a total of 10 × 150 distinct
optimization steps for each spike encoding function.

Prior to the signal-to-spike conversion we upsample the digital VMP signals from 1 kHz to
10 kHz in order to assign the event occurrence time instants more accurately. Furthermore, as
shown in Section 5.1.2, the individual signals have either all-positive or all-negative amplitude
(with small variations near the zero baseline). Hence, we take the absolute value of each signal
and normalize them to range 0-1. In doing so we avoid having to consider the amplitude range
variability across the different VMP sensors in our analysis. As a side effect of this signal
normalization process, the LIF-negative event type cannot occur in the encoded sequences.
Lastly, the spike sequences are shifted so that the first event within each sequence among all
event types occurs at a relative time 𝑡 = 0. The reason is twofold. Firstly, the sensors are placed
in a series; therefore, it is important to preserve the relative time shift between channels as the

5.2. Vehicle type identification based on the VMP signal 149

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10
Data split identifier

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

Ac
cu

ra
cy level-crossing

send-on-delta
LIF

Figure 5.5: Accuracy scores of the classifiers trained during the stratified 10-fold cross-validated
Bayesian optimization procedure. The dashed lines denote the average score over all data splits.

vehicle passes over the measuring system. Secondly, the information gathered by the sensor
before the vehicle enters the measurement space should be discarded, enforcing an effective
signal start time 𝑡 = 0.

5.2.1.2 Analyzing the results

The results of the Hyperopt optimization runs are summarized in Figure 5.5. A wide range
of obtained accuracy scores – from about 0.775 up to about 0.950 – indicates that the choice
of the encoding parameters has a significant impact on the k-NN classifier performance. It is
clear that some data splits are relatively more difficult to classify than others, although neither
classifier significantly deviates from their respective overall-average performance. Furthermore,
these results show that incorrectly choosing the LIF encoding parameters leads to significantly
worse performance than for level-crossing or send-on-delta schemes. Note that at this stage
it is impossible to infer whether one encoding is better than others because the Bayesian
optimization process is not constrained to use the same encoding parameters across different
data splits. Lastly, recall that the van Rossum distance parameters are also tuned, which
influences the final classification score.

Additional insights about the coding schemes were obtained by analyzing the classification
scores achieved by models trained with Hyperopt versus the average number of events produced
per the VMP sensor.b The reason for normalizing the total number of events in the spike train
by the number of VMP sensors is that the signals observed by the sensors generate roughly the
same number of events after encoding, meaning that the total number of events generated in the

bRecall that the term “VMP sensor” can refer to either the physical IL sensor or the excitation frequency of
the loop. Throughout our analyses we used four “VMP sensors” representing the R-VMP signals registered by the
quad-loop system at a single excitation frequency per loop.

150 Chapter 5. Event Sequence Classification for Multivariate Time Series

0.78

0.85

0.92

0.78

0.85

0.92

Ac
cu

ra
cy

100 101 102

Average number of events per VMP sensor

0.78

0.85

0.92

le
ve

l-c
ro

ss
in

g
se

nd
-o

n-
de

lta
LI

F

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.6: Kernel-smoothed density estimators of the k-NN classifier accuracy scores versus the
average number of events produced by a given encoding scheme per the VMP sensor. Heat maps
representing the estimated density were min-max normalized separately.

system scales linearly with the number of channels, regardless of the chosen coding scheme.
Additionally, doing so allows assessing the computational burden of introducing an additional
VMP sensor in the solution. The results presented in Figure 5.6 show that the number of events
is not the sole determining factor of classification performance. Concretely, send-on-delta
models exhibited similar levels of performance regardless of the number of events produced
by the encoding scheme, whereas the LIF parameter sets generating event sequences of similar
length can lead to a drastically different k-NN classifier performance.

In order to determine which set of encoding parameters is to be used in the downstream
analysis, we first note that the results of the Bayesian optimization process over 𝑁 different data
splits form several independent ranked lists 𝑄 = {𝑞1, 𝑞2, . . . , 𝑞𝑁 }. Within each ranking 𝑞 a
higher position (rank) is assigned to parameter sets achieving better k-NN classifier scores (ties
are allowed). One strategy would be to select the parameter set that performs the best overall,
across different data splits. However, the absolute value of the score depends on not only the
chosen parameters – which may not have been selected by the Bayesian optimization procedure
in other splits – but also on the stratified data sample. Additionally, it is preferable to choose
the parameter set that performs reasonably well in all data samples. Thus, a selection strategy
based on the top-performing parameters across all rankings is ill-advised.

For these reasons we devise the local weighted median selection strategy – a parameter
selection strategy that considers the local (i.e., within-ranking) rank of each result over all
data splits (Algorithm 5.1). The resulting parameter sets selected according to this strategy
are presented in Table 5.1 which also includes the stratified 10-fold cross-validated k-NN

5.2. Vehicle type identification based on the VMP signal 151

classifier performance for data splits preprocessed according to the chosen encoding schemes.
According to these results, the level-crossing encoding is slightly better for the VMP vehicle type
classification task than the alternatives. Importantly, each signal prior to the event encoding has
on average about 1590 samples, meaning that the analyzed encoding that generates the largest
number of samples – send-on-delta – produces a data representation that uses about 97.8%
fewer samples than the original.

Algorithm 5.1: Local weighted median selection strategy for the parameter sets found by the Bayesian
optimization procedure.
1 Inpu t : 𝑄 # s e t o f a l l r a n k i n g l i s t s {𝑞1, 𝑞2, . . . , 𝑞𝑁 } f o r 𝑁 d a t a s p l i t s
2 Output : p∗ # s e l e c t e d p a r ame t e r v e c t o r
3 Begin :
4 p∗ ← []
5 P𝛼 ← [] # i n i t i a l i z e a b u f f e r f o r p a r a m e t e r s
6 r𝛼 ← [] # i n i t i a l i z e a b u f f e r f o r r ank r e c i p r o c a l s c o r e s
7 For 𝑛 = 1, . . . , 𝑁 :
8 (P, s) ← 𝑞𝑛 # unpack t h e r a n k i n g i n t o p a r a m e t e r s P and s c o r e s s
9 r← 1/rank (s) # compute r ank r e c i p r o c a l f o r each s c o r e

10 # upda t e t h e b u f f e r s
11 P𝛼 ← [P𝛼 , P]
12 r𝛼 ← [r𝛼 , r]
13 End For
14 w𝛼 = r𝛼/

∑
r𝛼 # no rma l i z e t h e rank r e c i p r o c a l v a l u e s t o o b t a i n we i gh t s

15 𝑟∗ ← weighted median (r𝛼 ,w𝛼) # compute t h e we igh t ed median rank r e c i p r o c a l
16 (𝐼, 𝐶) ← shape (P𝛼) # g e t t h e number o f rows and columns
17 𝐽 ←

{
𝑖 : r[𝑖]𝛼 ≡ 𝑟∗

}
f i n d t h e rows t h a t c o r r e s p o n d s t o 𝑟∗

18 For 𝑐 = 1, . . . , 𝐶 :
19 # compute t h e median p a r ame t e r v a l u e ove r rows i n 𝐽

20 # and upda t e t h e b u f f e r
21 p∗ ←

[
p∗,median

(
P[𝐽,𝑐]𝛼

)]
22 End For
23 Return p∗

24 End

Finally, we analyzed the expected number of events produced by the chosen encoding
schemes for each VMP sensor separately. Together with the presented classification results
it allows us to reason about the coding efficiency. Figure 5.7 summarizes our findings. To
visualize these distributions we use letter-value plots [256] – an extension of the classical
boxplot that more accurately represents distribution tails for large data samples. It can be
observed that there is a clear difference between the empirical distributions of the number
of event sequences produced for the two standard inductive-loops (IL1 and IL3) and the two
slim loops (IL2 and IL4), regardless of the signal-to-spike encoding scheme. Furthermore, the
selected set of parameters for the level-crossing and send-on-delta encoding schemes produce
event sequences with a similar overall number of events, with send-on-delta sequences having

152 Chapter 5. Event Sequence Classification for Multivariate Time Series

Table 5.1: Signal-to-spike encoding parameters chosen according to the local weighted median selection
strategy. The multi-neuron van Rossum distance parameters used to evaluate the k-NN classifier are not
presented.

Encoding type Chosen parameters Number of events
per VMP sensor

stratified 10-fold cross-validated
k-NN performance

Accuracy F1-score
level-crossing 𝐿 = 12 29.484 ± 8.996 0.912 ± 0.011 0.907 ± 0.016
send-on-delta ∆ = 0.06 36.536 ± 9.040 0.910 ± 0.014 0.909 ± 0.019

LIF
𝜏int = 0.1

8.317 ± 5.673 0.905 ± 0.011 0.900 ± 0.015𝜏leak = 0.5
𝑉thr = 0.2

IL1 IL2 IL3 IL4
VMP sensor

100

101

102

To
ta

l n
um

be
r o

f g
en

er
at

ed
 e

ve
nt

s

level-crossing
send-on-delta
LIF

Figure 5.7: Letter-value plots of the total number of events produced by signal-to-spike encoding
schemes selected according to the local weighted median strategy for each input VMP sensor.

slightly more events on average. Conversely, the LIF encoding generates significantly fewer
events with the median number of events being about 3x smaller for the IL1-IL3 sensors and
about 6x smaller for the IL2-IL4 sensors. Moreover, it is capable of adapting to the original
signal’s variability, which is expressed by the wide range of the number of produced events over
all data samples. Given that all three classifiers presented in Table 5.1 have similar performance
with respect to the classification accuracy, the LIF encoding seems to be more efficient in terms
of the amount of information encoded by a single event.

5.2.2 Vehicle type identification with the MIMO SNN

5.2.2.1 Preliminaries

The set of parameters identified in the previously presented analysis were used to encode the
VMP signals into the spiking domain prior to training the MIMO SNN models on the vehicle

5.2. Vehicle type identification based on the VMP signal 153

type identification task. Figure 5.8 shows an example of spike codes obtained for a VMP time
series. Each event-sampling scheme produces a different number of distinct event types for
every VMP sensor, which means that the number of spiking neurons in the SNN input layer
differs between the coding schemes. In all experiments we used the same 𝐶-64-128-128-6
architecture, where the number of input neurons 𝐶 depends entirely on the encoding (𝐶 = 48
for level-crossing, 𝐶 = 8 for send-on-delta, and 𝐶 = 4 for LIF). This produces a small network
with 25344 + 64𝐶 parameters. Do note that the MIMO SNN model capacity is effectively
higher than indicated solely by the number of parameters due to the repeated firing of the
IF neurons parameterized by the refractory period 𝜏ref.

All layers were time-aligned according to the methodology presented in Section 3.2.2. This
is done to stabilize the training by reducing the magnitude of time-values of events in the
network. This removes the redundant time-shift information associated with each subsequent
layer waiting for the preceding layer to elicit its first event. Additionally, we introduce a neuron
response delay factor 𝜏delay in the first hidden layer. This parameter designates the earliest event
that is capable of eliciting a response in a given neuron. This is equivalent to making the neuron
start the simulation in a refractory period of duration 𝜏delay. We posit that choosing a different
𝜏delay for each neuron in a layer causes them to observe slightly different event sequences,
which circumvents the issue of the early events dictating the training progressc. Figure 5.9
presents a raster plot example for a network trained by setting nonzero values of 𝜏delay in the
first layer neurons. The parameter was varied on a linear grid. We did not use neuron response
delay factors in subsequent layers because the event sequences produced by the SNN have
significantly fewer events than the network input, making the neuron specialization easier.

The signal preprocessing steps were identical to the ones presented in Section 5.2.1.1. We
also used the same stratified 10-fold data split to perform the cross-validation. The MIMO SNN
models were trained by minimizing

𝐿total(𝑧, 𝑦) =
1
𝑁

𝑁∑︁
𝑛=1

𝐿𝑛 (𝑧, 𝑦) + 𝛾𝑅∗spiking + 𝜆𝑅𝐿2 , (5.8)

where 𝛾 is the synaptic regularization parameter for the spike-firing penalty 𝑅∗spiking (3.67),
and 𝜆 controls the strength of the 𝐿2 regularization term 𝑅𝐿2 . All models were trained with
the RMSprop optimizer with a learning rate of 0.001 over 2500 iterations with a batch size

cLet us demonstrate this phenomenon through a thought experiment. Assume that all neurons start in the resting
state, i.e., 𝜏delay = 0 for all neurons. Additionally, assume that there is a neuron that in response to the training
procedure specializes in responding to a pattern that occurs relatively late in the input event sequence. Then, this
neuron needs to either have synaptic weights smaller than other neurons in the network (so that it does not respond
too early relative to the pattern it is detecting), or it has synaptic weights that are comparable to other neurons, but
some of the spikes it generates are uninformative (because they were not made in response to patterns it is tuned
for). This situation occurs whenever a neuron observes events that are ultimately not important to the message it
tries to convey, such as in response to early events of the input event sequence.

154 Chapter 5. Event Sequence Classification for Multivariate Time Series

0

0.19

0

0.015

0

0.23

R-
VM

P
[Ω

] IL1
IL2
IL3
IL4

0.0 0.5 1.0 1.5 2.0
Time [s]

0

0.017

0.0 0.5 1.0 1.5 2.0
Time [s]

#48

#1

Ev
en

t t
yp

e

0.0 0.5 1.0 1.5 2.0
Time [s]

#8

#1

Ev
en

t t
yp

e

0.0 0.5 1.0 1.5 2.0
Time [s]

#4

#1Ev
en

t t
yp

e

le
ve

l-c
ro

ss
in

g
se

nd
-o

n-
de

lta
LI

F

Figure 5.8: An example of a VMP signal and its different event domain representations. Curves and
raster plot points are color-coded to signify the correspondence between the input VMP channel and the
output event sequences. The vertical axis for the three encoding raster plots represents different event
types: 48 for level-crossing, 8 for send-on-delta, and 4 for the LIF encoding. These spike trains are
presented at the SNN input layer.

5.2. Vehicle type identification based on the VMP signal 155

Input

0.0
1.0
2.0
3.0
4.0
5.0
6.0

Ti
m

e
[τ

sy
n]

Hidden #1 Hidden #2 Hidden #3 Output

Figure 5.9: Spike raster plot for a MIMO SNN model trained with a nonzero neuron response delay
factor 𝜏delay in the first hidden layer. The dashed line denotes the value of 𝜏delay assigned to each neuron
in the layer. It is evident that neurons with a smaller response delay elicit their first response earlier than
those with a larger 𝜏delay.

of 50 examples. We set 𝜆 = 10−5 in all experiments. Similarly to training the models on the
CREDO data (Section 4.4.3), the regularization parameter 𝛾 was initially set to a large value
of 105 in order to guide the model towards a solution that is capable of propagating event
throughout the entire network. Then, after 𝜂 iterations, the value of 𝛾 was decreased to 103 in
order to increase the relative importance of solving the classification task.

We used Hyperopt to optimize the parameters that control how the information is processed
by the network. Specifically, the following Bayesian optimization search space was defined:

• the refractory period: log (𝜏ref) ∼ U (−0.6, 0),
• the longest neuron response delay 𝜏delay for a linearly-spaced grid: 𝜏max delay ∼ N

(
𝑡avg, 1

)
subject to 𝜏max delay ≥ 0, where 𝑡avg is the average event time of input sequences in the
current training dataset,

• the number of iterations to train with a larger spike-firing penalty: 𝜂 ∼ U {300, 800}.
This parameter-selection process was run for 30 optimization iterations on a single data split
of the 10-fold cross-validation (the same for all tested encoding types). Afterwards, five best-
performing sets of parameters were selected and used to train models on all remaining data
splitsd. In total we optimized the weights of 225 models over three spike encoding schemes.

5.2.2.2 Analyzing the results

Figure 5.10a summarizes the accuracy scores of models trained as part of the Bayesian optim-
ization procedure on a single data split of the stratified 10-fold cross-validation. On average the
LIF encoding performed worse than the alternatives. Recall that all three encoding schemes
parameterized according to the local weighted median selection strategy had similar accuracy

dWhen selecting the top-5 Hyperopt models we break ties according to the following heuristic rule: prioritize
lower 𝜏max delay, higher 𝜏ref, and lower 𝜂 (in that order of importance). This corresponds to models that generate
fewer events and respond faster.

156 Chapter 5. Event Sequence Classification for Multivariate Time Series

scores of the k-NN classifier of about 0.908 (Table 5.1). This means that the Bayesian optim-
ization procedure failed to find a LIF model that was better than its own baseline. Conversely,
the level-crossing and send-on-delta models did perform better than their respective k-NN clas-
sifier, with a similar median accuracy between the two. Note that the presence of outliers in the
lower range of accuracy scores indicates that incorrectly choosing the hyperparameters during
training significantly degrades the performance of the final model. Nevertheless, it is clear that
running the optimization procedure over many steps can result in a high-performing model,
provided that the signal-to-spike encoding is chosen correctly.

Secondly, Figure 5.10b presents the accuracy scores for models trained with the top-5
best-performing parameters chosen by Hyperopt, separately for each encoding type and each
cross-validation data split. In doing so we analyzed the robustness of the classifiers trained with
these hyperparameters with respect to different input data. Here we observe several differences
between models operating on differently-encoded data. Once again, the LIF models achieved
much lower absolute performance scores than the other encoding types. Moreover, both the
level-crossing and LIF models evaluated on data splits #2-10 indicated worse classification
accuracy than that of the reference split #1 (used to find the top-5 hyperparameter sets). On the
other hand, the send-on-delta models evaluated on data splits #3, #7, #8 and #10 all achieved
similar levels of performance as in scenario #1. This indicates that the parameters chosen for
the send-on-delta encoding are more robust with respect to the training data choice (albeit it
also exhibits an extreme performance outlier in data split #9, compared to all trained models),
whereas the level-crossing and LIF encoding schemes seem to require careful tuning on the
available data.

Lastly, in Table 5.2 we present the top-5 parameter sets for the three encoding types, as
well as the stratified 10-fold cross-validated performance metrics for models trained with these
hyperparameters. We note that the top-5 parameter sets selected for the send-of-delta and
LIF models are much more similar to one another than those selected for the level-crossing
encoding. This implies that for this specific task 30 steps of the Bayesian optimization process
are enough to converge to a good-enough (local minimum) solution for these two model types,
but not enough to do so for the level-crossing scheme. Interestingly, the selected values of
𝜏max delay were smaller for the send-on-delta and LIF models when compared to level-crossing.
This might suggest that a nonzero 𝜏max delay is beneficial when the number of neurons in the
input layer is large (as in level-crossing), rather than when they generate a large number of
events (as in send-on-delta). Finally, recall that the prior on the number of iterations to train
with a larger spike-firing penalty 𝜂 was U {300, 800}. Almost all of the selected values of 𝜂
ended up being on the higher-end, which indicates that training the model with a relatively
smaller weight given to the task-specific loss for longer leads to a better performance of the

5.2. Vehicle type identification based on the VMP signal 157

0.75
0.80
0.85
0.90
0.95

Ac
cu

ra
cy

a)

Data split identifier

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96

Ac
cu

ra
cy

b)
level-crossing
send-on-delta
LIF

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10
Data split identifier

0.70

Figure 5.10: a) Summary of the SNN model performance for models trained with Hyperopt (30 optim-
ization iterations on a single data split of the stratified 10-fold cross-validation). b) Accuracy scores of
the SNN models trained with top-5 parameter sets found by the Bayesian optimization process on data
split #1. The dashed lines denote the average score over all data splits.

final model.
When compared to the performance achieved by the baseline k-NN classifiers (Table 5.1),

it can be seen that training the SNN leads to a reduction in error rates in the vehicle type
classification task, provided that the signal-to-spike encoding scheme is selected properly.
Undoubtedly, processing an example through the SNN is more computationally demanding
than computing the multi-neuron van Rossum distance between a pair of examples. However,
for a k-NN-based system the actual prediction time depends on the size of the reference database,
which makes this solution scale poorly with the number of training examples.

Taking the above into consideration, the send-on-delta encoding emerged as the best event-
triggered sampling scheme for the VMP-based vehicle type classification task. These models
achieved the best stratified 10-fold cross-validation performance, they were more robust with
respect to the different data splits, and the Bayesian optimization procedure was able to converge
to a locally optimal solution within the constrained number of optimization steps. Note that
this cannot be attributed solely to a large average number of events generated by the encoding,
given that it is quite similar for the level-crossing event sequences (Figure 5.7). On the other
hand, we found that machine learning solutions using level-crossing encoding are simpler to
design than the tested alternatives: it is easier to assess the number of events of a new type
when considering the addition of a new amplitude level to sample the signal at, rather than to
estimate how a change in the send-on-delta parameter might impact the spike count distribution

158 Chapter 5. Event Sequence Classification for Multivariate Time Series

Table 5.2: Summary of the top-5 parameter sets found by the Bayesian optimization process used to
train the SNN models for the respective spike encoding type.

Encoding type Number of events
per VMP sensor

Top-5 parameter sets stratified 10-fold cross-validated
SNN performance

𝜏max delay 𝜏ref 𝜂 Accuracy F1-score

level-crossing 29.484 ± 8.996

0.9 1.0000 700 0.926 ± 0.019 0.929 ± 0.018
1.2 0.2512 400 0.917 ± 0.024 0.920 ± 0.027
0.9 0.6310 600 0.915 ± 0.035 0.917 ± 0.033
0.9 0.2512 700 0.919 ± 0.024 0.922 ± 0.024
0.7 0.7943 500 0.913 ± 0.028 0.919 ± 0.028

send-on-delta 36.536 ± 9.040

0.3 0.3981 600 0.937 ± 0.030 0.928 ± 0.031
0.4 0.5012 600 0.926 ± 0.036 0.913 ± 0.044
0.4 0.5012 700 0.946 ± 0.018 0.937 ± 0.021
0.4 0.5012 800 0.937 ± 0.026 0.926 ± 0.027
0.0 0.3162 500 0.909 ± 0.073 0.907 ± 0.068

LIF 8.317 ± 5.673

0.0 0.5012 300 0.861 ± 0.024 0.859 ± 0.027
0.2 0.5012 600 0.868 ± 0.031 0.856 ± 0.040
0.0 0.3981 700 0.854 ± 0.032 0.852 ± 0.038
0.0 0.5012 400 0.859 ± 0.024 0.858 ± 0.024
0.0 0.5012 700 0.855 ± 0.031 0.851 ± 0.038

of existing event types. Overall, the existence of such trade-offs suggests that the pros and cons
of different signal-to-spike conversion schemes must be weighed when developing a solution
that satisfies the design constraints.

5.3 Summary

In this Chapter we described a novel methodology for training event-centric machine learning
models on multivariate time series data. These sequences are processed by various event-
triggered sampling schemes in order to obtain a representation understood by a spiking neural
network. Successfully training a model to solve a vehicle type identification task proves that the
proposed time-to-first-spike MIMO SNN can be applied to data that is not naturally represented
in the event data domain. Together with the previously-described results on event sequence
(Chapter 3) and static image (Chapter 4) data, this validates the applicability of our model to
different scenarios encountered in practical machine learning problems.

We proposed to split the signal-to-spike encoding scheme selection from the actual model
training and evaluation on the target task. This provided several benefits over the alternative.
Perhaps most importantly, it allowed to reduce the number of Bayesian optimization steps in the
model hyperparameter search, given that training the SNN is by far the most time-consuming
part of the experimental setup. Secondly, it made the model performance comparison analysis

5.3. Summary 159

simpler by disentangling the impact of different input encoding parameters on the performance
of the final model. While it can be argued that, ideally, the encoding parameters should be
optimized together with the SNN hyperparameters, such approach was deemed too impractical
in this study. Nevertheless, this direction is worth further investigation in the future.

Three different event-triggered sampling schemes were evaluated in this Chapter: level-
crossing, send-on-delta and the Leaky Integrate-and-Fire time encoding machine. In contrast
to previous studies that mostly focus on reconstructing the signal from the generated events, we
were interested in understanding how the choice of the encoding impacts a machine learning
solution. We found that the accuracy of the k-NN classifier on the vehicle classification task
can be as low as about 0.775 and as high as about 0.950. Such a wide range of obtained results
indicates that correctly setting the encoding scheme parameters is of paramount importance.
Unfortunately, this also means that choosing the parameter set to be used in the downstream
analysis is unintuitive, especially considering the performance variability introduced by fitting
the model on different data splits. We proposed a local weighted median selection strategy
that constructs a set of model performance ranking lists for each data split and attempts to find
the median performance across different hyperparameter settings. It allowed us to settle on a
single set of parameters for each encoding, with the average accuracy ranging from 0.905 (for
the LIF encoding) to 0.912 (for send-on-delta). This can be considered a fair baseline for the
downstream SNN models, given the comparable cross-validated performance of the three k-NN
classifiers.

For the SNN trained on data transformed according to the selected event-triggered sampling
schemes, the send-on-delta models emerged as the best-performing group of networks. Not only
did they achieve the best overall cross-validated performance (average accuracy of 0.946), but
also they were more robust with respect to the different data splits, and the Bayesian optimization
procedure was able to converge to a locally optimal solution within the constrained number of
optimization steps. However, they did so while exhibiting the highest average number of events
generated by the sampling scheme, generating slightly more events than the second-worst, the
level-crossing encoding. We found that the SNN trained on time series data sampled according
to the LIF scheme perform much worse than the tested alternatives. We posit that three factors
have played a major role in this outcome: a small number of distinct event types produced by
the encoding (only one per input sensor), few events observed by the network (about 3-6x fewer
than the alternative schemes on average), and multiple encoding parameters to optimize for (in
contrast to only one parameter for send-on-delta and level-crossing). Verifying whether this
assessment is correct – that these factors induce poor SNN classifier performance regardless of
the encoding type – warrants further investigation. Overall, our findings suggest the existence
of a trade-off between model performance with respect to classification metrics and its energy-

160 Chapter 5. Event Sequence Classification for Multivariate Time Series

efficiency in terms of the number of generated events. These factors must be taken into
consideration when designing an end-to-end event-centric machine learning solution.

The quad inductive loop system for the VMP signal acquisition considered in this study
provides significantly more data than was used to train the SNN models. Specifically, we took
a subset of all channels, leaving only four of them for further processing (the R-VMP signals
registered by sensors at their lowest excitation frequency). We aim to relax this constraint in
future research, which might lead to an improvement in model performance on the vehicle type
classification task. Another interesting research prospect is to depart from the classification
context and instead apply the Siamese SNN methodology presented in Chapter 4 to solve a
vehicle re-identification task. A prerequisite to such analysis is for the source data to contain
information about the specific vehicle instances, i.e., unique to each and every vehicles in the
dataset. An SNN model for vehicle re-identification could be used in real-time traffic flow
monitoring.

Chapter 6

Conclusions and Future Work

Modern IT systems and services put an increasing emphasis on gathering user activity behavior
data and monitoring system internal state by logging important event occurrence data. With
the rising volume of such data there is a pressing need for the development of scalable machine
learning solutions capable of analyzing, assessing, and making predictions from it. This need is
further exacerbated by the rising interest in event-triggered sampling schemes for analog signal
acquisition. These sampling methods provide benefits (over the typical uniform sampling
approach) such as data sparsity, wide dynamic range, and low data transmission delays. Thus,
event-centric machine learning methods must also be capable of processing data originating
from event sensors.

This thesis explored two different approaches to machine learning on event data: a classical
one based on the theory of point processes, and a recently developed solution using artificial
spiking neural networks. Both methods were selected in order to address identified knowledge
gaps that hinder their applicability to the aforementioned tasks.

We found that presently there is little research on the topic of point process sequence
classification that focuses on the bounds on model performance with respect to the observation
period length and training dataset size. To address this, we developed a novel methodology
based on the Bayes theory of classification for the two-class problem for a class of spike train data
characterized by non-random point process intensity functions. We examined the optimal Bayes
rules, as well as a general class of plug-in classifiers that are capable of solving the classification
task. We found that for a large class of intensity functions the Bayes risk converges to zero as
the event observation interval increases. This reveals the perfect classification property of the
Bayes rule with respect to a long observation time interval. Furthermore, the convergence of
a data-based kernel classifier to the Bayes risk in terms of the training dataset size was also
established. These findings are supported by a finite sample study on simulated data. Lastly,
we provided empirical evidence that for the proposed kernel classifier the negative impact of

161

162 Chapter 6. Conclusions and Future Work

boundary effects is significant only when the observation window length is comparable to the
kernel bandwidth.

We also made several contributions to the SNN training framework. An existing single-
spike time-to-first-spike SNN was used as the basis of our work. This model considers the
network state only at time-instants related to event occurrence, which addresses one of the
research questions related to training the SNN models posed in this dissertation. Several key
limitations of this model were identified and addressed during the course of this study. We
showed how the incumbent SNN layer computation can be vectorized to obtain the layer outputs
in a single pass over model inputs. This reduces the time required to compute the result by
three orders of magnitude when compared to the original algorithm description, allowing it
to be used in modern deep learning frameworks for scalable machine learning. Additionally,
a modification that makes the model capable of processing multiple spikes at its input and
eliciting multiple spikes at its output was also presented. Our formulation is compatible with
the aforementioned vectorized computation by expressing the algorithm in terms of iteratively
calculating successive output spikes, which stands in contrast to other approaches that simulate
the state of the entire network over a finite time window with a fixed time step.

Moreover, some key challenges associated with the training procedure of the time-to-first-
spike SNN model were identified. We showed that the network exhibits numerical instability
when trained with event times of large magnitude. To address this effect we proposed to
either shift the events back to 𝑡 = 0 before each layer computation, or to transform the events
themselves using a bijective function that shrinks the data domain. Another identified issue
with the training dynamics is the slow convergence of the loss function when the synaptic
regularization parameter is kept constant throughout the entire training procedure. A solution
that scales the value of this parameter based on how well the current network performs on the
underlying machine learning task was proposed and evaluated.

Additionally, we introduced a Siamese SNN that adapts the Siamese network concept to the
spiking domain such that it is trained end-to-end directly in the event space. This differs from
other works that train a nonspiking Siamese network and then convert it to the spiking domain.
In our loss function we used the Earth Mover’s Distance (a special case of the Wasserstein
metric) as the similarity measure to train the model. Note that any distance function that is
applicable to spike trains can be used in this context, specifically those commonly utilized in
computational neuroscience research.

Following-up on the aforementioned theoretical and empirical findings considered to be the
main research contributions of this thesis, the models under study were applied to real event
data. We considered the machine learning tasks of Twitter bot detection, the CREDO image
artefact rejection, and the VMP vehicle type classification. Each case-study was described

163

separately, highlighting the research methodology and how the encountered problem-specific
challenges can be overcome. In doing so the applicability of these methods was assessed,
both on the natural event data, as well as on datasets obtained by conversion into the spiking
domain. The models trained on the latter dataset type were additionally analyzed with respect
to the impact of the conversion scheme on the model performance and properties. Overall,
the proposed methods achieved good performance on all presented research problems. In each
study we found evidence of an accuracy-sparsity trade-off exhibited by the proposed SNN. This
highlights the importance of evaluating the impact of signal-to-spike conversion schemes on
the machine learning model performance prior to finalizing the design of the entire system.

There are several directions of further research worth considering. For the point process-
based approach, a seemingly obvious idea is to consider a multi-class classification problem
or classifying multivariate event sequences. This would greatly extend the applicability of this
solution. Additionally, the presented algorithm uses a fixed kernel bandwidth during the shape
function estimation step. A natural extension of this approach is to select different bandwidths
at different timescales, given that each sequence can be arbitrarily long and the density of events
may vary with time. Moreover, taking into consideration a larger class of point processes would
be of great interest, including the self-exciting Hawkes process and marked point processes.

For the SNN model one unaddressed limitation is that the IF neuron’s membrane voltage
does not gradually return to the resting state in the absence of events once the neuron is excited
by a stimulus. Incorporating a voltage decay constant into the model – and modifying the entire
layer computation accordingly – would allow continuous monitoring of long-running processes
without explicitly resetting the state of the network after every example. Furthermore, it might be
interesting to revisit the vectorized implementation of the spiking layer introduced in this thesis.
The main drawback of the presented solution is the inability to consider only the informative
events in its computation. Specifically, non-events introduced by the tensor-based approach
contribute to the overall computation while ultimately having no impact on the generated set of
spikes. Thus a different approach is needed to scale the algorithm to even larger sets of spiking
data. Solving this issue seems to also be a prerequisite to adapting the proposed SNN layer
to construct its convolutional counterpart. Alongside the aforementioned research avenues
concerning signal propagation through a spiking layer, one might also consider designing
different task-specific loss functions of the SNN in order to adapt existing deep learning models
to the spiking context.

Finally, both of the proposed models will struggle with updating their predictions as new
events are observed. New data influence the shape function estimate of the kernel classifier if
they occur inside the interval delineated by the kernel bandwidth centered around a past event.
Similarly, a new event might change the causal set, impacting the signal propagation inside

164 Chapter 6. Conclusions and Future Work

the SNN. These problems limit the applicability of our methods to offline prediction with a
bounded observation interval. It might be beneficial to explore modifications that address this
issue for both algorithms.

Bibliography

[1] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal Dynamics: From Single
Neurons to Networks and Models of Cognition, Cambridge University Press, 2014.

[2] O. Shchur, A. C. Türkmen, T. Januschowski, and S. Günnemann, “Neural temporal point
processes: A review,” arXiv preprint arXiv:2104.03528, 2021.

[3] Z. Chen, L. D. Van Khoa, E. N. Teoh, et al., “Machine learning techniques for anti-money
laundering (AML) solutions in suspicious transaction detection: a review,” Knowledge
and Information Systems, vol. 57, no. 2, pp. 245–285, 2018.

[4] P. Ładyżyński, K. Żbikowski, and P. Gawrysiak, “Direct marketing campaigns in re-
tail banking with the use of deep learning and random forests,” Expert Systems with
Applications, vol. 134, pp. 28–35, 2019.

[5] M. Mazza, S. Cresci, M. Avvenuti, et al., “RTbust: Exploiting temporal patterns for
botnet detection on Twitter,” in Proceedings of the 10th ACM Conference on Web
Science, 2019, pp. 183–192.

[6] Y. Shen, E. Mariconti, P. A. Vervier, and G. Stringhini, “Tiresias: Predicting security
events through deep learning,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018, pp. 592–605.

[7] M. Du, F. Li, G. Zheng, and V. Srikumar, “DeepLog: Anomaly detection and diagnosis
from system logs through deep learning,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017, pp. 1285–1298.

[8] B. Shickel, P. J. Tighe, A. Bihorac, and P. Rashidi, “Deep EHR: A survey of recent
advances in deep learning techniques for electronic health record (EHR) analysis,” IEEE
Journal of Biomedical and Health Informatics, vol. 22, no. 5, pp. 1589–1604, 2018.

[9] A. Rajkomar, E. Oren, K. Chen, et al., “Scalable and accurate deep learning with
electronic health records,” npj Digital Medicine, vol. 1, no. 1, pp. 18, 2018.

165

166 Bibliography

[10] S. M. Lauritsen, M. E. Kalør, E. L. Kongsgaard, et al., “Early detection of sepsis utilizing
deep learning on electronic health record event sequences,” Artificial Intelligence in
Medicine, vol. 104, pp. 101820, 2020.

[11] P. Dayan and L. F. Abbott, Theoretical Neuroscience: Computational and Mathematical
Modeling of Neural Systems, The MIT Press, 2001.

[12] H. G. Rey, C. Pedreira, and R. Quian Quiroga, “Past, present and future of spike sorting
techniques,” Brain Research Bulletin, vol. 119, pp. 106–117, 2015.

[13] W. Bialek, F. Rieke, R. van Steveninck, and D. Warland, “Reading a neural code,” in
Advances in Neural Information Processing Systems, 1989, vol. 2.

[14] S.-C. Liu, B. Rueckauer, E. Ceolini, et al., “Event-driven sensing for efficient perception:
Vision and audition algorithms,” IEEE Signal Processing Magazine, vol. 36, no. 6,
pp. 29–37, 2019.

[15] C. Posch, T. Serrano-Gotarredona, B. Linares-Barranco, and T. Delbruck, “Retino-
morphic event-based vision sensors: Bioinspired cameras with spiking output,” Pro-
ceedings of the IEEE, vol. 102, no. 10, pp. 1470–1484, 2014.

[16] S.-C. Liu, A. van Schaik, B. A. Minch, and T. Delbruck, “Asynchronous binaural spatial
audition sensor with 2× 64× 4 channel output,” IEEE Transactions on Biomedical
Circuits and Systems, vol. 8, no. 4, pp. 453–464, 2014.

[17] A. Vanarse, A. Osseiran, and A. Rassau, “An investigation into spike-based neuromorphic
approaches for artificial olfactory systems,” Sensors, vol. 17, no. 11, 2017.

[18] B. Ward-Cherrier, N. Pestell, and N. F. Lepora, “NeuroTac: A neuromorphic optical
tactile sensor applied to texture recognition,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA), 2020, pp. 2654–2660.

[19] E. Doutsi, L. Fillatre, M. Antonini, and P. Tsakalides, “Dynamic image quantization
using leaky integrate-and-fire neurons,” IEEE Transactions on Image Processing, vol. 30,
pp. 4305–4315, 2021.

[20] M. Saeed, Q. Wang, O. Märtens, et al., “Evaluation of level-crossing ADCs for event-
driven ECG classification,” IEEE Transactions on Biomedical Circuits and Systems,
vol. 15, no. 6, pp. 1129–1139, 2021.

[21] G. Orchard, A. Jayawant, G. K. Cohen, and N. Thakor, “Converting static image datasets
to spiking neuromorphic datasets using saccades,” Frontiers in Neuroscience, vol. 9,
2015.

Bibliography 167

[22] M. Pawlak, M. Pabian, and D. Rzepka, “Asymptotically optimal nonparametric classific-
ation rules for spike train data,” in ICASSP 2023 - 2023 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2023, pp. 1–5.

[23] M. Pabian, D. Rzepka, and M. Pawlak, “Supervised training of Siamese spiking neural
networks with Earth Mover’s Distance,” in ICASSP 2022 - 2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022, pp. 4233–
4237.

[24] M. Pabian, D. Rzepka, Ł. Bibrzycki, and M. Pawlak, “Differentiating signal from
artefacts in cosmic ray detection: Applying Siamese spiking neural networks to CREDO
experimental data,” Measurement, vol. 220, pp. 113273, 2023.

[25] L. Devroye, L. Györfi, and G. Lugosi, A Probabilistic Theory of Pattern Recognition,
Springer New York, 1996.

[26] H. Fanaee-T and J. Gama, “Event labeling combining ensemble detectors and background
knowledge,” Progress in Artificial Intelligence, vol. 2, no. 2, pp. 113–127, 2014.

[27] W. Greblicki, “Asymptotically optimal pattern recognition procedures with density
estimates,” IEEE Transactions on Information Theory, vol. 24, no. 2, pp. 250–251,
1978.

[28] D. R. Cox and P. A. W. Lewis, The Statistical Analysis of Series of Events, Springer
Dordrecht, 1966.

[29] A. G. Hawkes, “Spectra of some self-exciting and mutually exciting point processes,”
Biometrika, vol. 58, no. 1, pp. 83–90, 1971.

[30] D. R. Cox, “Some statistical methods connected with series of events,” Journal of the
Royal Statistical Society: Series B (Methodological), vol. 17, no. 2, pp. 129–157, 1955.

[31] S. Byers and A. E. Raftery, “Nearest-neighbor clutter removal for estimating features
in spatial point processes,” Journal of the American Statistical Association, vol. 93,
no. 442, pp. 577–584, 1998.

[32] D. C. I. Walsh and A. E. Raftery, “Classification of mixtures of spatial point processes
via partial Bayes factors,” Journal of Computational and Graphical Statistics, vol. 14,
no. 1, pp. 139–154, 2005.

[33] T. Rajala, C. Redenbach, A. Särkkä, and M. Sormani, “Variational Bayes approach for
classification of points in superpositions of point processes,” Spatial Statistics, vol. 15,
pp. 85–99, 2016.

[34] C. Redenbach, A. Särkkä, and M. Sormani, “Classification of points in superpositions
of Strauss and Poisson processes,” Spatial Statistics, vol. 12, pp. 81–95, 2015.

168 Bibliography

[35] M. Lukasik, P. K. Srijith, D. Vu, et al., “Hawkes processes for continuous time sequence
classification: an application to rumour stance classification in Twitter,” in 54th Annual
Meeting of the Association for Computational Linguistics, 2016, pp. 393–398.

[36] S. Liu and M. Hauskrecht, “Event outlier detection in continuous time,” in Proceedings of
the 38th International Conference on Machine Learning, 2021, vol. 139, pp. 6793–6803.

[37] J. D. Victor and K. P. Purpura, “Metric-space analysis of spike trains: theory, algorithms
and application,” Network: Computation in Neural Systems, vol. 8, no. 2, pp. 127–164,
1997.

[38] K. E. Tranbarger Freier and F. P. Schoenberg, “On the computation and application of
prototype point patterns,” The Open Applied Informatics Journal, vol. 4, no. 1, 2010.

[39] J. Mateu, F. P. Schoenberg, D. M. Diez, et al., “On measures of dissimilarity between
point patterns: Classification based on prototypes and multidimensional scaling,” Bio-
metrical Journal, vol. 57, no. 2, pp. 340–358, 2015.

[40] A. Cholaquidis, L. Forzani, P. Llop, and L. Moreno, “On the classification problem for
Poisson point processes,” Journal of Multivariate Analysis, vol. 153, pp. 1–15, 2017.

[41] K. Pawlasová and J. Dvořák, “Supervised nonparametric classification in the context of
replicated point patterns,” Image Analysis and Stereology, vol. 41, no. 2, pp. 57–109,
2022.

[42] X. Rong and V. Solo, “On the error rate for classifying point processes,” in 2021 60th
IEEE Conference on Decision and Control (CDC), 2021, pp. 120–125.

[43] K. Li, S. Li, and Y. Fu, “Early classification of ongoing observation,” in 2014 IEEE
International Conference on Data Mining, 2014, pp. 310–319.

[44] B.-N. Vo, N. Dam, D. Phung, et al., “Model-based learning for point pattern data,”
Pattern Recognition, vol. 84, pp. 136–151, 2018.

[45] D. J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes,
Springer New York, 2003.

[46] Á. Gajardo and H.-G. Müller, “Cox point process regression,” IEEE Transactions on
Information Theory, vol. 68, no. 2, pp. 1133–1156, 2022.

[47] L. Birgé and P. Massart, “Rates of convergence for minimum contrast estimators,”
Probability Theory and Related Fields, vol. 97, no. 1, pp. 113–150, 1993.

[48] S. van de Geer, “Exponential inequalities for martingales, with application to maximum
likelihood estimation for counting processes,” The Annals of Statistics, vol. 23, no. 5,
pp. 1779–1801, 1995.

Bibliography 169

[49] M. Pawlak, M. Pabian, and D. Rzepka, “Bayes risk consistency of nonparametric
classification rules for spike trains data,” arXiv preprint arXiv:2308.04796, 2023.

[50] P. Diggle and J. S. Marron, “Equivalence of smoothing parameter selectors in density and
intensity estimation,” Journal of the American Statistical Association, vol. 83, no. 403,
pp. 793–800, 1988.

[51] O. Aalen, “Nonparametric inference for a family of counting processes,” The Annals of
Statistics, vol. 6, no. 4, pp. 701–726, 1978.

[52] P. K. Andersen, Ø. Borgan, R. D. Gill, and N. Keiding, Statistical Models Based on
Counting Processes, Springer New York, 2012.

[53] M. P. Wand and M. C. Jones, Kernel Smoothing, Chapman and Hall/CRC, 1994.

[54] W. Greblicki and M. Pawlak, Nonparametric System Identification, Cambridge Univer-
sity Press, 2008.

[55] T. Gasser and H.-G. Müller, “Kernel estimation of regression functions,” in T. Gasser and
M. Rosenblatt (Eds.), Smoothing Techniques for Curve Estimation, pp. 23–68, Springer
Berlin Heidelberg, 1979.

[56] T. Gasser and H.-G. Müller, “Estimating regression functions and their derivatives by
the kernel method,” Scandinavian Journal of Statistics, vol. 11, no. 3, pp. 171–185,
1984.

[57] M. C. Jones, “Simple boundary correction for kernel density estimation,” Statistics and
Computing, vol. 3, no. 3, pp. 135–146, 1993.

[58] J. D. Hart and T. E. Wehrly, “Kernel regression when the boundary region is large, with
an application to testing the adequacy of polynomial models,” Journal of the American
Statistical Association, vol. 87, no. 420, pp. 1018–1024, 1992.

[59] E. F. Schuster, “Incorporating support constraints into nonparametric estimators of
densities,” Communications in Statistics - Theory and Methods, vol. 14, no. 5, pp. 1123–
1136, 1985.

[60] J. S. Marron and D. Ruppert, “Transformations to reduce boundary bias in kernel density
estimation,” Journal of the Royal Statistical Society: Series B (Methodological), vol. 56,
no. 4, pp. 653–671, 1994.

[61] E. Ferrara, O. Varol, C. Davis, et al., “The rise of social bots,” Communications of the
ACM, vol. 59, no. 7, pp. 96–104, 2016.

[62] M. Del Vicario, G. Vivaldo, A. Bessi, et al., “Echo chambers: Emotional contagion and
group polarization on Facebook,” Scientific Reports, vol. 6, no. 1, pp. 37825, 2016.

170 Bibliography

[63] V. S. Subrahmanian, A. Azaria, S. Durst, et al., “The DARPA Twitter bot challenge,”
Computer, vol. 49, no. 6, pp. 38–46, 2016.

[64] S. Cresci, R. Di Pietro, M. Petrocchi, et al., “The paradigm-shift of social spambots:
Evidence, theories, and tools for the arms race,” in Proceedings of the 26th International
Conference on World Wide Web Companion, 2017, pp. 963–972.

[65] S. Feng, H. Wan, N. Wang, et al., “TwiBot-20: A comprehensive Twitter bot detection
benchmark,” in Proceedings of the 30th ACM International Conference on Information
& Knowledge Management, 2021, pp. 4485–4494.

[66] C. A. Davis, O. Varol, E. Ferrara, et al., “BotOrNot: A system to evaluate social bots,”
in Proceedings of the 25th International Conference Companion on World Wide Web,
2016, pp. 273–274.

[67] K.-C. Yang, O. Varol, C. A. Davis, et al., “Arming the public with artificial intelligence
to counter social bots,” Human Behavior and Emerging Technologies, vol. 1, no. 1,
pp. 48–61, 2019.

[68] J. Rodríguez-Ruiz, J. I. Mata-Sánchez, R. Monroy, et al., “A one-class classification
approach for bot detection on Twitter,” Computers & Security, vol. 91, pp. 101715,
2020.

[69] H. S. Dutta, A. Chetan, B. Joshi, and T. Chakraborty, “Retweet us, we will retweet you:
Spotting collusive retweeters involved in blackmarket services,” in 2018 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining (ASO-
NAM), 2018, pp. 242–249.

[70] Z. Miller, B. Dickinson, W. Deitrick, et al., “Twitter spammer detection using data
stream clustering,” Information Sciences, vol. 260, pp. 64–73, 2014.

[71] A. Minnich, N. Chavoshi, D. Koutra, and A. Mueen, “BotWalk: Efficient adaptive
exploration of Twitter bot networks,” in Proceedings of the 2017 IEEE/ACM Interna-
tional Conference on Advances in Social Networks Analysis and Mining 2017, 2017,
pp. 467–474.

[72] M. BalaAnand, N. Karthikeyan, S. Karthik, et al., “An enhanced graph-based semi-
supervised learning algorithm to detect fake users on Twitter,” The Journal of Super-
computing, vol. 75, no. 9, pp. 6085–6105, 2019.

[73] Q. Cao, M. Sirivianos, X. Yang, and T. Pregueiro, “Aiding the detection of fake accounts
in large scale social online services,” in 9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 12), 2012, pp. 197–210.

Bibliography 171

[74] S. N. Firdaus, C. Ding, and A. Sadeghian, “Retweet: A popular information diffusion
mechanism – a survey paper,” Online Social Networks and Media, vol. 6, pp. 26–40,
2018.

[75] M. Giatsoglou, D. Chatzakou, N. Shah, et al., “Retweeting activity on Twitter: Signs of
deception,” in Advances in Knowledge Discovery and Data Mining, 2015, pp. 122–134.

[76] L. G. Stewart, A. Arif, and K. Starbird, “Examining trolls and polarization with a retweet
network,” in Proceedings of WSDM workshop on Misinformation and Misbehavior
Mining on the Web (MIS2), 2018.

[77] N. Chavoshi, H. Hamooni, and A. Mueen, “Identifying correlated bots in Twitter,” in
Social Informatics, 2016, pp. 14–21.

[78] S. Gupta, P. Kumaraguru, and T. Chakraborty, “MalReG: Detecting and analyzing
malicious retweeter groups,” in Proceedings of the ACM India Joint International
Conference on Data Science and Management of Data, 2019, pp. 61–69.

[79] J. Pan, Y. Liu, X. Liu, and H. Hu, “Discriminating bot accounts based solely on temporal
features of microblog behavior,” Physica A: Statistical Mechanics and its Applications,
vol. 450, pp. 193–204, 2016.

[80] S. Cresci, R. D. Pietro, M. Petrocchi, et al., “Social fingerprinting: Detection of spambot
groups through DNA-inspired behavioral modeling,” IEEE Transactions on Dependable
and Secure Computing, vol. 15, no. 4, pp. 561–576, 2018.

[81] L. C. Aiello and P. Wheeler, “The expensive-tissue hypothesis: The brain and the
digestive system in human and primate evolution,” Current Anthropology, vol. 36, no. 2,
pp. 199–221, 1995.

[82] J. E. Niven and S. B. Laughlin, “Energy limitation as a selective pressure on the evolution
of sensory systems,” Journal of Experimental Biology, vol. 211, no. 11, pp. 1792–1804,
2008.

[83] S. Li, C. Yan, and Y. Liu, “Energy efficiency and coding of neural network,” Frontiers
in Neuroscience, vol. 16, 2023.

[84] C. Koch, Biophysics of Computation: Information Processing in Single Neurons, Oxford
University Press, 1998.

[85] L. F. Abbott, “Lapicque’s introduction of the integrate-and-fire model neuron (1907),”
Brain Research Bulletin, vol. 50, no. 5, pp. 303–304, 1999.

[86] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its
application to conduction and excitation in nerve,” The Journal of Physiology, vol. 117,
no. 4, pp. 500–544, 1952.

172 Bibliography

[87] T. V. P. Bliss and G. L. Collingridge, “A synaptic model of memory: long-term potenti-
ation in the hippocampus,” Nature, vol. 361, no. 6407, pp. 31–39, 1993.

[88] S. F. Cooke and T. V. P. Bliss, “Plasticity in the human central nervous system,” Brain,
vol. 129, no. 7, pp. 1659–1673, 2006.

[89] G. Hinton and T. J. Sejnowski, Unsupervised Learning: Foundations of Neural Compu-
tation, The MIT Press, 1999.

[90] W. Gerstner, A. K. Kreiter, H. Markram, and A. V. M. Herz, “Neural codes: Firing
rates and beyond,” Proceedings of the National Academy of Sciences, vol. 94, no. 24,
pp. 12740–12741, 1997.

[91] E. D. Adrian and Y. Zotterman, “The impulses produced by sensory nerve-endings:
Part II. The response of a single end-organ,” The Journal of Physiology, vol. 61, no. 2,
pp. 151–171, 1926.

[92] A. J. Fuglevand, D. A. Winter, and A. E. Patla, “Models of recruitment and rate coding
organization in motor-unit pools,” Journal of Neurophysiology, vol. 70, no. 6, pp. 2470–
2488, 1993.

[93] E. Salinas, A. Hernández, A. Zainos, and R. Romo, “Periodicity and firing rate as can-
didate neural codes for the frequency of vibrotactile stimuli,” Journal of Neuroscience,
vol. 20, no. 14, pp. 5503–5515, 2000.

[94] M. Abeles, H. Bergman, E. Margalit, and E. Vaadia, “Spatiotemporal firing patterns in
the frontal cortex of behaving monkeys,” Journal of Neurophysiology, vol. 70, no. 4,
pp. 1629–1638, 1993.

[95] P. Reinagel and R. C. Reid, “Temporal coding of visual information in the thalamus,”
Journal of Neuroscience, vol. 20, no. 14, pp. 5392–5400, 2000.

[96] T. Gollisch and M. Meister, “Rapid neural coding in the retina with relative spike
latencies,” Science, vol. 319, no. 5866, pp. 1108–1111, 2008.

[97] A. Riehle, S. Grün, M. Diesmann, and A. Aertsen, “Spike synchronization and rate mod-
ulation differentially involved in motor cortical function,” Science, vol. 278, no. 5345,
pp. 1950–1953, 1997.

[98] M. Diesmann, M.-O. Gewaltig, and A. Aertsen, “Stable propagation of synchronous
spiking in cortical neural networks,” Nature, vol. 402, no. 6761, pp. 529–533, 1999.

[99] N. S. Harper and D. McAlpine, “Optimal neural population coding of an auditory spatial
cue,” Nature, vol. 430, no. 7000, pp. 682–686, 2004.

Bibliography 173

[100] S. Thorpe and J. Gautrais, “Rank order coding,” in J. M. Bower (Ed.), Computational
Neuroscience, pp. 113–118, Springer US, 1998.

[101] S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe, and T. Masquelier, “STDP-based
spiking deep convolutional neural networks for object recognition,” Neural Networks,
vol. 99, pp. 56–67, 2018.

[102] B. Sakmann and E. Neher, Single-Channel Recording, Springer New York, 1995.

[103] R. E. Kass, U. T. Eden, and E. N. Brown, Analysis of Neural Data, Springer New York,
2014.

[104] M. J. Chacron, B. Lindner, and A. Longtin, “Noise shaping by interval correlations
increases information transfer,” Physical Review Letters, vol. 92, pp. 080601, 2004.

[105] W. Truccolo, U. T. Eden, M. R. Fellows, et al., “A point process framework for relat-
ing neural spiking activity to spiking history, neural ensemble, and extrinsic covariate
effects,” Journal of Neurophysiology, vol. 93, no. 2, pp. 1074–1089, 2005.

[106] M. P. Nawrot, C. Boucsein, V. Rodriguez-Molina, et al., “Serial interval statistics of
spontaneous activity in cortical neurons in vivo and in vitro,” Neurocomputing, vol. 70,
no. 10, pp. 1717–1722, 2007.

[107] O. Avila-Akerberg and M. J. Chacron, “Nonrenewal spike train statistics: causes and
functional consequences on neural coding,” Experimental Brain Research, vol. 210,
no. 3, pp. 353–371, 2011.

[108] M. Pfeiffer and T. Pfeil, “Deep learning with spiking neurons: Opportunities and
challenges,” Frontiers in Neuroscience, vol. 12, 2018.

[109] J. Dethier, P. Nuyujukian, S. I. Ryu, et al., “Design and validation of a real-time spiking-
neural-network decoder for brain-machine interfaces,” Journal of Neural Engineering,
vol. 10, no. 3, pp. 036008, 2013.

[110] J. K. Eshraghian, M. Ward, E. O. Neftci, et al., “Training spiking neural networks using
lessons from deep learning,” Proceedings of the IEEE, vol. 111, no. 9, pp. 1016–1054,
2023.

[111] Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional neural networks for energy-
efficient object recognition,” International Journal of Computer Vision, vol. 113, no. 1,
pp. 54–66, 2015.

[112] B. Rueckauer, I.-A. Lungu, Y. Hu, et al., “Conversion of continuous-valued deep
networks to efficient event-driven networks for image classification,” Frontiers in Neur-
oscience, vol. 11, 2017.

174 Bibliography

[113] B. Rueckauer and S.-C. Liu, “Conversion of analog to spiking neural networks using
sparse temporal coding,” in 2018 IEEE International Symposium on Circuits and Systems
(ISCAS), 2018, pp. 1–5.

[114] R. Midya, Z. Wang, S. Asapu, et al., “Artificial neural network (ANN) to spiking
neural network (SNN) converters based on diffusive memristors,” Advanced Electronic
Materials, vol. 5, no. 9, pp. 1900060, 2019.

[115] C. Stöckl and W. Maass, “Optimized spiking neurons can classify images with high
accuracy through temporal coding with two spikes,” Nature Machine Intelligence, vol. 3,
no. 3, pp. 230–238, 2021.

[116] R. Gütig and H. Sompolinsky, “The tempotron: a neuron that learns spike timing–based
decisions,” Nature Neuroscience, vol. 9, no. 3, pp. 420–428, 2006.

[117] J. Wu, Y. Chua, M. Zhang, et al., “A spiking neural network framework for robust sound
classification,” Frontiers in Neuroscience, vol. 12, 2018.

[118] E. Hunsberger and C. Eliasmith, “Training spiking deep networks for neuromorphic
hardware,” arXiv preprint arXiv:1611.05141, 2016.

[119] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking neural networks using
backpropagation,” Frontiers in Neuroscience, vol. 10, 2016.

[120] D. Rasmussen, “NengoDL: Combining deep learning and neuromorphic modelling
methods,” Neuroinformatics, vol. 17, no. 4, pp. 611–628, 2019.

[121] N. Rathi, G. Srinivasan, P. Panda, and K. Roy, “Enabling deep spiking neural networks
with hybrid conversion and spike timing dependent backpropagation,” arXiv preprint
arXiv:2005.01807, 2020.

[122] E. Hunsberger and C. Eliasmith, “Training spiking deep networks for neuromorphic
hardware,” arXiv preprint arXiv:1611.05141, 2016.

[123] H. Mostafa, “Supervised learning based on temporal coding in spiking neural networks,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 7, pp. 3227–
3235, 2018.

[124] A. Javanshir, T. T. Nguyen, M. A. P. Mahmud, and A. Z. Kouzani, “Advancements in al-
gorithms and neuromorphic hardware for spiking neural networks,” Neural Computation,
vol. 34, no. 6, pp. 1289–1328, 2022.

[125] F. Corradi, S. Pande, J. Stuijt, et al., “ECG-based heartbeat classification in neuromorphic
hardware,” in 2019 International Joint Conference on Neural Networks (IJCNN), 2019,
pp. 1–8.

Bibliography 175

[126] E. Donati, M. Payvand, N. Risi, et al., “Discrimination of EMG signals using a neur-
omorphic implementation of a spiking neural network,” IEEE Transactions on Biomed-
ical Circuits and Systems, vol. 13, no. 5, pp. 795–803, 2019.

[127] P. Negri, M. Soto, B. Linares-Barranco, and T. Serrano-Gotarredona, “Scene context
classification with event-driven spiking deep neural networks,” in 2018 25th IEEE
International Conference on Electronics, Circuits and Systems (ICECS), 2018, pp. 569–
572.

[128] F. Ponulak and A. Kasiński, “Supervised learning in spiking neural networks with
ReSuMe: Sequence learning, classification, and spike shifting,” Neural Computation,
vol. 22, no. 2, pp. 467–510, 2010.

[129] I. Sporea and A. Grüning, “Supervised learning in multilayer spiking neural networks,”
Neural Computation, vol. 25, no. 2, pp. 473–509, 2013.

[130] S. M. Bohte, J. N. Kok, and H. La Poutré, “Error-backpropagation in temporally encoded
networks of spiking neurons,” Neurocomputing, vol. 48, no. 1, pp. 17–37, 2002.

[131] O. Booij and H. tat Nguyen, “A gradient descent rule for spiking neurons emitting
multiple spikes,” Information Processing Letters, vol. 95, no. 6, pp. 552–558, 2005.

[132] Y. Xu, X. Zeng, L. Han, and J. Yang, “A supervised multi-spike learning algorithm based
on gradient descent for spiking neural networks,” Neural Networks, vol. 43, pp. 99–113,
2013.

[133] D. Huh and T. J. Sejnowski, “Gradient descent for spiking neural networks,” in Advances
in Neural Information Processing Systems, 2018, vol. 31.

[134] W. Zhang and P. Li, “Temporal spike sequence learning via backpropagation for deep
spiking neural networks,” in Advances in Neural Information Processing Systems, 2020,
vol. 33, pp. 12022–12033.

[135] N. Perez-Nieves and D. Goodman, “Sparse spiking gradient descent,” in Advances in
Neural Information Processing Systems, 2021, vol. 34, pp. 11795–11808.

[136] Y. Zhu, Z. Yu, W. Fang, et al., “Training spiking neural networks with event-driven
backpropagation,” in Advances in Neural Information Processing Systems, 2022, vol. 35,
pp. 30528–30541.

[137] T. C. Wunderlich and C. Pehle, “Event-based backpropagation can compute exact
gradients for spiking neural networks,” Scientific Reports, vol. 11, no. 1, pp. 12829,
2021.

176 Bibliography

[138] S. Rotter and M. Diesmann, “Exact digital simulation of time-invariant linear systems
with applications to neuronal modeling,” Biological Cybernetics, vol. 81, no. 5, pp. 381–
402, 1999.

[139] Y. Wu, L. Deng, G. Li, et al., “Spatio-temporal backpropagation for training high-
performance spiking neural networks,” Frontiers in Neuroscience, vol. 12, 2018.

[140] H. Zheng, Y. Wu, L. Deng, et al., “Going deeper with directly-trained larger spiking
neural networks,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
no. 12, pp. 11062–11070, 2021.

[141] F. Zenke and S. Ganguli, “SuperSpike: Supervised learning in multilayer spiking neural
networks,” Neural Computation, vol. 30, no. 6, pp. 1514–1541, 2018.

[142] S. B. Shrestha and G. Orchard, “SLAYER: Spike layer error reassignment in time,” in
Advances in Neural Information Processing Systems, 2018, vol. 31.

[143] F. C. Bauer, G. Lenz, S. Haghighatshoar, and S. Sheik, “EXODUS: Stable and efficient
training of spiking neural networks,” Frontiers in Neuroscience, vol. 17, 2023.

[144] E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learning in spiking neural net-
works: Bringing the power of gradient-based optimization to spiking neural networks,”
IEEE Signal Processing Magazine, vol. 36, no. 6, pp. 51–63, 2019.

[145] B. Yin, F. Corradi, and S. M. Bohté, “Accurate and efficient time-domain classification
with adaptive spiking recurrent neural networks,” Nature Machine Intelligence, vol. 3,
no. 10, pp. 905–913, 2021.

[146] Y. Li, Y. Guo, S. Zhang, et al., “Differentiable spike: Rethinking gradient-descent
for training spiking neural networks,” in Advances in Neural Information Processing
Systems, 2021, vol. 34, pp. 23426–23439.

[147] W. Fang, Z. Yu, Y. Chen, et al., “Deep residual learning in spiking neural networks,” in
Advances in Neural Information Processing Systems, 2021, vol. 34, pp. 21056–21069.

[148] Y. Kim, J. Chough, and P. Panda, “Beyond classification: directly training spiking neural
networks for semantic segmentation,” Neuromorphic Computing and Engineering, vol. 2,
no. 4, pp. 044015, 2022.

[149] I. M. Comsa, K. Potempa, L. Versari, et al., “Temporal coding in spiking neural networks
with alpha synaptic function,” in ICASSP 2020 - 2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 8529–8533.

[150] S. R. Kheradpisheh and T. Masquelier, “Temporal backpropagation for spiking neural
networks with one spike per neuron,” International Journal of Neural Systems, vol. 30,
no. 6, pp. 2050027, 2020.

Bibliography 177

[151] S. Zhou, X. Li, Y. Chen, et al., “Temporal-coded deep spiking neural network with easy
training and robust performance,” in Proceedings of the AAAI Conference on Artificial
Intelligence, 2021, vol. 35, pp. 11143–11151.

[152] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[153] T. Serrano-Gotarredona and B. Linares-Barranco, “Poker-DVS and MNIST-DVS. Their
history, how they were made, and other details,” Frontiers in Neuroscience, vol. 9, 2015.

[154] S. Hochreiter, “The vanishing gradient problem during learning recurrent neural nets
and problem solutions,” International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, vol. 6, no. 2, pp. 107–116, 1998.

[155] E. Neftci, S. Das, B. Pedroni, et al., “Event-driven contrastive divergence for spiking
neuromorphic systems,” Frontiers in Neuroscience, vol. 7, 2014.

[156] P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition using spike-
timing-dependent plasticity,” Frontiers in Computational Neuroscience, vol. 9, 2015.

[157] P. U. Diehl, D. Neil, J. Binas, et al., “Fast-classifying, high-accuracy spiking deep net-
works through weight and threshold balancing,” in 2015 International Joint Conference
on Neural Networks (IJCNN), 2015, pp. 1–8.

[158] M. Abadi, P. Barham, J. Chen, et al., “TensorFlow: A system for large-scale machine
learning,” in 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), 2016, pp. 265–283.

[159] A. Paszke, S. Gross, F. Massa, et al., “PyTorch: An imperative style, high-performance
deep learning library,” in Advances in Neural Information Processing Systems, 2019,
vol. 32.

[160] C. R. Harris, K. J. Millman, S. J. van der Walt, et al., “Array programming with NumPy,”
Nature, vol. 585, no. 7825, pp. 357–362, 2020.

[161] T. Tieleman, G. Hinton, et al., “Lecture 6.5 – RMSprop: Divide the gradient by a running
average of its recent magnitude,” COURSERA: Neural networks for machine learning,
vol. 4, no. 2, pp. 26–31, 2012.

[162] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” in Proceedings of the 32nd International Conference
on Machine Learning, 2015, vol. 37, pp. 448–456.

[163] P. Werbos, “Backpropagation through time: what it does and how to do it,” Proceedings
of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

178 Bibliography

[164] F. Akopyan, J. Sawada, A. Cassidy, et al., “TrueNorth: Design and tool flow of a 65 mW
1 million neuron programmable neurosynaptic chip,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 34, no. 10, pp. 1537–1557, 2015.

[165] M. Davies, N. Srinivasa, T.-H. Lin, et al., “Loihi: A neuromorphic manycore processor
with on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.

[166] N. M. Timme and C. Lapish, “A tutorial for information theory in neuroscience,” eNeuro,
vol. 5, no. 3, 2018.

[167] M. C. W. van Rossum, “A novel spike distance,” Neural Computation, vol. 13, no. 4,
pp. 751–763, 2001.

[168] S. Schreiber, J. M. Fellous, D. Whitmer, et al., “A new correlation-based measure of
spike timing reliability,” Neurocomputing, vol. 52-54, pp. 925–931, 2003.

[169] A. Szűcs, “Applications of the spike density function in analysis of neuronal firing
patterns,” Journal of Neuroscience Methods, vol. 81, no. 1, pp. 159–167, 1998.

[170] A. R. Paiva, I. Park, and J. C. Príncipe, “A reproducing kernel Hilbert space framework
for spike train signal processing,” Neural Computation, vol. 21, no. 2, pp. 424–449,
2009.

[171] E. Satuvuori and T. Kreuz, “Which spike train distance is most suitable for distinguishing
rate and temporal coding?,” Journal of Neuroscience Methods, vol. 299, pp. 22–33, 2018.

[172] A. R. C. Paiva, I. Park, and J. C. Príncipe, “A comparison of binless spike train measures,”
Neural Computing and Applications, vol. 19, no. 3, pp. 405–419, 2010.

[173] D. Chicharro, T. Kreuz, and R. G. Andrzejak, “What can spike train distances tell us
about the neural code?,” Journal of Neuroscience Methods, vol. 199, no. 1, pp. 146–165,
2011.

[174] T. Kreuz, J. S. Haas, A. Morelli, et al., “Measuring spike train synchrony,” Journal of
Neuroscience Methods, vol. 165, no. 1, pp. 151–161, 2007.

[175] T. Kreuz, D. Chicharro, M. Greschner, and R. G. Andrzejak, “Time-resolved and time-
scale adaptive measures of spike train synchrony,” Journal of Neuroscience Methods,
vol. 195, no. 1, pp. 92–106, 2011.

[176] E. Satuvuori, M. Mulansky, N. Bozanic, et al., “Measures of spike train synchrony for
data with multiple time scales,” Journal of Neuroscience Methods, vol. 287, pp. 25–38,
2017.

[177] D. Sihn and S.-P. Kim, “A spike train distance robust to firing rate changes based on the
Earth Mover’s Distance,” Frontiers in Computational Neuroscience, vol. 13, 2019.

Bibliography 179

[178] J. Bromley, I. Guyon, Y. LeCun, et al., “Signature verification using a "Siamese" time
delay neural network,” in Advances in Neural Information Processing Systems, 1993,
vol. 6.

[179] J. Mueller and A. Thyagarajan, “Siamese recurrent architectures for learning sentence
similarity,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2016,
vol. 30.

[180] Y. Dong, X. Yang, H. Wu, et al., “Lightweight and edge-preserving speckle match-
ing network for precise single-shot 3D shape measurement,” Measurement, vol. 210,
pp. 112549, 2023.

[181] T. Jeyapoovan and M. Murugan, “Surface roughness classification using image pro-
cessing,” Measurement, vol. 46, no. 7, pp. 2065–2072, 2013.

[182] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified embedding for face
recognition and clustering,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015, pp. 815–823.

[183] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for one-shot image
recognition,” in Proceedings of the 32nd International Conference on International
Conference on Machine Learning (ICML), 2015, vol. 37.

[184] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, “On the surprising behavior of distance
metrics in high dimensional space,” in Database Theory — ICDT 2001, 2001, pp. 420–
434.

[185] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning an invariant
mapping,” in 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’06), 2006, vol. 2, pp. 1735–1742.

[186] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric discriminatively,
with application to face verification,” in 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05), 2005, vol. 1, pp. 539–546.

[187] B. Song, “Deep neural network for learning to rank query-text pairs,” arXiv preprint
arXiv:1802.08988, 2018.

[188] C.-Y. Wu, R. Manmatha, A. J. Smola, and P. Krahenbuhl, “Sampling matters in deep
embedding learning,” in Proceedings of the IEEE International Conference on Computer
Vision (ICCV), 2017, pp. 2840–2848.

[189] A. Hermans, L. Beyer, and B. Leibe, “In defense of the triplet loss for person re-
identification,” arXiv preprint arXiv:1703.07737, 2017.

180 Bibliography

[190] L. Xie, Z. Wu, X. Zhang, et al., “Writer-independent online signature verification based
on 2D representation of time series data using triplet supervised network,” Measurement,
vol. 197, pp. 111312, 2022.

[191] M. Dunnhofer, M. Antico, F. Sasazawa, et al., “Siam-U-Net: encoder-decoder siamese
network for knee cartilage tracking in ultrasound images,” Medical Image Analysis,
vol. 60, pp. 101631, 2020.

[192] Y. Xu, J. Zhang, and J. Brownjohn, “An accurate and distraction-free vision-based
structural displacement measurement method integrating Siamese network based tracker
and correlation-based template matching,” Measurement, vol. 179, pp. 109506, 2021.

[193] H. Bredin, “TristouNet: Triplet loss for speaker turn embedding,” in 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017,
pp. 5430–5434.

[194] R. C. Daudt, B. L. Saux, and A. Boulch, “Fully convolutional Siamese networks for
change detection,” in 2018 25th IEEE International Conference on Image Processing
(ICIP), 2018, pp. 4063–4067.

[195] X. Liu, J. van de Weijer, and A. D. Bagdanov, “RankIQA: Learning from rankings
for no-reference image quality assessment,” in Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2017, pp. 1040–1049.

[196] H. Doughty, D. Damen, and W. Mayol-Cuevas, “Who’s better? Who’s best? Pair-
wise deep ranking for skill determination,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018, pp. 6057–6066.

[197] X. Lin, X. Wang, and Z. Hao, “Supervised learning in multilayer spiking neural networks
with inner products of spike trains,” Neurocomputing, vol. 237, pp. 59–70, 2017.

[198] Y. Xing, G. Di Caterina, and J. Soraghan, “A new spiking convolutional recurrent neural
network (SCRNN) with applications to event-based hand gesture recognition,” Frontiers
in Neuroscience, vol. 14, 2020.

[199] Y. Luo, M. Xu, C. Yuan, et al., “SiamSNN: Siamese spiking neural networks for energy-
efficient object tracking,” in Artificial Neural Networks and Machine Learning – ICANN
2021, 2021, pp. 182–194.

[200] T. Kreuz, D. Chicharro, C. Houghton, et al., “Monitoring spike train synchrony,” Journal
of Neurophysiology, vol. 109, no. 5, pp. 1457–1472, 2013.

[201] T. Kreuz, M. Mulansky, and N. Bozanic, “SPIKY: a graphical user interface for monitor-
ing spike train synchrony,” Journal of Neurophysiology, vol. 113, no. 9, pp. 3432–3445,
2015.

Bibliography 181

[202] G. Peyré and M. Cuturi, “Computational optimal transport: With applications to data
science,” Foundations and Trends in Machine Learning, vol. 11, no. 5-6, pp. 355–607,
2019.

[203] S. Cohen, Finding Color And Shape Patterns In Images, Ph.D. thesis, Stanford University,
1999.

[204] D. Rzepka, M. Miśkowicz, D. Kościelnik, and N. T. Thao, “Reconstruction of signals
from level-crossing samples using implicit information,” IEEE Access, vol. 6, pp. 35001–
35011, 2018.

[205] Ł. Bibrzycki, D. Burakowski, P. Homola, et al., “Towards a global cosmic ray sensor
network: CREDO detector as the first open-source mobile application enabling detection
of penetrating radiation,” Symmetry, vol. 12, no. 11, 2020.

[206] M. Piekarczyk, O. Bar, Ł. Bibrzycki, et al., “CNN-based classifier as an offline trigger
for the CREDO experiment,” Sensors, vol. 21, no. 14, 2021.

[207] O. Bar, Ł. Bibrzycki, M. Niedźwiecki, et al., “Zernike moment based classification of
cosmic ray candidate hits from CMOS sensors,” Sensors, vol. 21, no. 22, 2021.

[208] F. Zareef, A. Oblakowska-Mucha, and T. Szumlak, “Silicon detectors beyond LHC –
RD50 status report,” Journal of Instrumentation, vol. 17, no. 11, pp. C11004, 2022.

[209] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory,
vol. 52, no. 4, pp. 1289–1306, 2006.

[210] F. Marvasti, Nonuniform Sampling: Theory and Practice, Springer New York, 2001.

[211] M. Miśkowicz, “Reducing communication by event-triggered sampling,” in M. Miśkow-
icz (Ed.), Event-Based Control and Signal Processing, pp. 37–58, CRC Press, 2015.

[212] M. Greitans and R. Shavelis, “Speech sampling by level-crossing and its reconstruction
using spline-based filtering,” in 2007 14th International Workshop on Systems, Signals
and Image Processing and 6th EURASIP Conference focused on Speech and Image
Processing, Multimedia Communications and Services, 2007, pp. 292–295.

[213] C. Vezyrtzis and Y. Tsividis, “Processing of signals using level-crossing sampling,” in
2009 IEEE International Symposium on Circuits and Systems, 2009, pp. 2293–2296.

[214] D. Rzepka, M. Pawlak, D. Kościelnik, and M. Miśkowicz, “Reconstruction of varying
bandwidth signals from event-triggered samples,” in M. Miśkowicz (Ed.), Event-Based
Control and Signal Processing, pp. 529–546, CRC Press, 2015.

[215] P. Martínez-Nuevo, S. Patil, and Y. Tsividis, “Derivative level-crossing sampling,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 62, no. 1, pp. 11–15, 2015.

182 Bibliography

[216] D. Rzepka and M. Miśkowicz, “Recovery of varying-bandwidth signal from samples of
its extrema,” in 2013 Signal Processing: Algorithms, Architectures, Arrangements, and
Applications (SPA), 2013, pp. 143–148.

[217] J. Selva, “Efficient sampling of band-limited signals from sine wave crossings,” IEEE
Transactions on Signal Processing, vol. 60, no. 1, pp. 503–508, 2012.

[218] M. Miśkowicz, “Send-on-delta concept: An event-based data reporting strategy,”
Sensors, vol. 6, no. 1, pp. 49–63, 2006.

[219] Y. S. Suh, “Send-on-delta sensor data transmission with a linear predictor,” Sensors,
vol. 7, no. 4, pp. 537–547, 2007.

[220] M. Miśkowicz, “The event-triggered integral criterion for sensor sampling,” in Proceed-
ings of the IEEE International Symposium on Industrial Electronics, 2005. ISIE 2005.,
2005, vol. 3, pp. 1061–1066.

[221] M. Miśkowicz, “Efficiency of event-based sampling according to error energy criterion,”
Sensors, vol. 10, no. 3, pp. 2242–2261, 2010.

[222] A. A. Lazar and L. T. Tóth, “Time encoding and perfect recovery of bandlimited signals,”
in 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing,
2003. Proceedings. (ICASSP ’03)., 2003, vol. 6, pp. VI–709.

[223] A. A. Lazar, “Time encoding with an integrate-and-fire neuron with a refractory period,”
Neurocomputing, vol. 58-60, pp. 53–58, 2004.

[224] A. A. Lazar, “Multichannel time encoding with integrate-and-fire neurons,” Neurocom-
puting, vol. 65-66, pp. 401–407, 2005.

[225] A. A. Lazar, “Population encoding with Hodgkin–Huxley neurons,” IEEE Transactions
on Information Theory, vol. 56, no. 2, pp. 821–837, 2010.

[226] T. Strohmer, “Numerical analysis of the non-uniform sampling problem,” Journal of
Computational and Applied Mathematics, vol. 122, no. 1, pp. 297–316, 2000.

[227] H. Choi and D. C. Munson, “Stochastic formulation of bandlimited signal interpolation,”
IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing,
vol. 47, no. 1, pp. 82–85, 2000.

[228] A. Aldroubi and K. Gröchenig, “Nonuniform sampling and reconstruction in shift-
invariant spaces,” SIAM Review, vol. 43, no. 4, pp. 585–620, 2001.

[229] N. T. Thao, D. Rzepka, and M. Miśkowicz, “Bandlimited signal reconstruction from
leaky integrate-and-fire encoding using POCS,” IEEE Transactions on Signal Pro-
cessing, vol. 71, pp. 1464–1479, 2023.

Bibliography 183

[230] L. A. Klein, M. K. Mills, D. R. P. Gibson, et al., “Traffic Detector Handbook: Volume
I,” Tech. Rep., Federal Highway Administration (Turner-Fairbank Highway Research
Center), 2006.

[231] J. Gajda, R. Sroka, M. Stencel, et al., “A vehicle classification based on inductive loop
detectors,” in IMTC 2001. Proceedings of the 18th IEEE Instrumentation and Meas-
urement Technology Conference. Rediscovering Measurement in the Age of Informatics
(Cat. No.01CH 37188), 2001, vol. 1, pp. 460–464.

[232] S. Oh, S. G. Ritchie, and C. Oh, “Real-time traffic measurement from single loop
inductive signatures,” Transportation Research Record, vol. 1804, no. 1, pp. 98–106,
2002.

[233] Y.-K. Ki and D.-K. Baik, “Vehicle-classification algorithm for single-loop detectors
using neural networks,” IEEE Transactions on Vehicular Technology, vol. 55, no. 6,
pp. 1704–1711, 2006.

[234] S.-T. Jeng and S. G. Ritchie, “Real-time vehicle classification using inductive loop
signature data,” Transportation Research Record, vol. 2086, no. 1, pp. 8–22, 2008.

[235] S. Meta and M. G. Cinsdikici, “Vehicle-classification algorithm based on component
analysis for single-loop inductive detector,” IEEE Transactions on Vehicular Technology,
vol. 59, no. 6, pp. 2795–2805, 2010.

[236] T. M. Kwon, “Route tracking of border crossing vehicles using inductance signatures
of loop detectors,” in Proceedings of the 2005 IEEE International Workshop on Meas-
urement Systems for Homeland Security, Contraband Detection and Personal Safety
Workshop, 2005. (IMS 2005), 2005, pp. 103–109.

[237] M. Ndoye, V. F. Totten, J. V. Krogmeier, and D. M. Bullock, “Sensing and signal
processing for vehicle reidentification and travel time estimation,” IEEE Transactions
on Intelligent Transportation Systems, vol. 12, no. 1, pp. 119–131, 2011.

[238] D. Guilbert, C. Le Bastard, S.-S. Ieng, and Y. Wang, “Re-identification by inductive
loop detector: Experimentation on target origin – destination matrix,” in 2013 IEEE
Intelligent Vehicles Symposium (IV), 2013, pp. 1421–1427.

[239] D. Guilbert, S.-S. Ieng, C. L. Bastard, and Y. Wang, “Robust blind deconvolution process
for vehicle reidentification by an inductive loop detector,” IEEE Sensors Journal, vol. 14,
no. 12, pp. 4315–4322, 2014.

[240] C. Sun and S. G. Ritchie, “Individual vehicle speed estimation using single loop inductive
waveforms,” Journal of Transportation Engineering, vol. 125, no. 6, pp. 531–538, 1999.

184 Bibliography

[241] B. Coifman, S. Dhoorjaty, and Z.-H. Lee, “Estimating median velocity instead of
mean velocity at single loop detectors,” Transportation Research Part C: Emerging
Technologies, vol. 11, no. 3, pp. 211–222, 2003.

[242] X.-Y. Lu, P. Varaiya, R. Horowitz, et al., “Estimating traffic speed with single inductive
loop event data,” Transportation Research Record, vol. 2308, no. 1, pp. 157–166, 2012.

[243] J. Gajda, P. Piwowar, R. Sroka, et al., “Application of inductive loops as wheel detectors,”
Transportation Research Part C: Emerging Technologies, vol. 21, no. 1, pp. 57–66, 2012.

[244] Z. Marszałek, R. Sroka, and T. Zeglen, “Inductive loop for vehicle axle detection from
first concepts to the system based on changes in the sensor impedance components,” in
2015 20th International Conference on Methods and Models in Automation and Robotics
(MMAR), 2015, pp. 765–769.

[245] Z. Marszałek, T. Zeglen, R. Sroka, and J. Gajda, “Inductive loop axle detector based on
resistance and reactance vehicle magnetic profiles,” Sensors, vol. 18, no. 7, 2018.

[246] A. Mocholí-Salcedo, J. H. Arroyo-Núñez, V. M. Milián-Sánchez, et al., “Magnetic field
generated by the loops used in traffic control systems,” IEEE Transactions on Intelligent
Transportation Systems, vol. 18, no. 8, pp. 2126–2136, 2017.

[247] Z. Marszałek, “Maxwell-Wien bridge with vector voltmeter system for measurement
small and rapid changes in inductive-loop sensor impedance components,” Measurement,
vol. 121, pp. 57–61, 2018.

[248] Z. Marszałek and K. Duda, “Multifrequency vector measurement system for reliable
vehicle magnetic profile assessment,” Sensors, vol. 20, no. 17, 2020.

[249] F. Mocholí Belenguer, A. Mocholí Salcedo, A. Guill Ibañez, and V. Milián Sánchez,
“Advantages offered by the double magnetic loops versus the conventional single ones,”
PLOS ONE, vol. 14, no. 2, 2019.

[250] Z. Marszałek, K. Duda, P. Piwowar, et al., “Load estimation of moving passenger cars
using inductive-loop technology,” Sensors, vol. 23, no. 4, 2023.

[251] M. Cuturi, “Sinkhorn distances: Lightspeed computation of optimal transport,” in
Advances in Neural Information Processing Systems, 2013, vol. 26.

[252] J. Feydy, T. Séjourné, F.-X. Vialard, et al., “Interpolating between optimal transport and
MMD using Sinkhorn divergences,” in Proceedings of the Twenty-Second International
Conference on Artificial Intelligence and Statistics, 2019, vol. 89, pp. 2681–2690.

[253] C. Houghton and K. Sen, “A new multineuron spike train metric,” Neural Computation,
vol. 20, no. 6, pp. 1495–1511, 2008.

Bibliography 185

[254] C. Houghton and T. Kreuz, “On the efficient calculation of van Rossum distances,”
Network: Computation in Neural Systems, vol. 23, no. 1–2, pp. 48–58, 2012.

[255] J. Bergstra, D. Yamins, and D. Cox, “Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures,” in Proceedings of the
30th International Conference on Machine Learning, 2013, vol. 28, pp. 115–123.

[256] H. Hofmann, H. Wickham, and K. Kafadar, “Letter-value plots: Boxplots for large data,”
Journal of Computational and Graphical Statistics, vol. 26, no. 3, pp. 469–477, 2017.

	Title page
	Abstract
	List of Acronyms
	Contents
	Introduction
	Background
	Motivation
	Dissertation outline

	Bayes Rules for Spike Train Data Classification
	Introduction
	Spike train probabilistic modeling
	Supervised classification: the point processes approach

	Bayes classification rule
	Bayes rule convergence for simulated data

	Plug-in classification rules
	Kernel classifier
	Kernel classifier convergence to the Bayes classification rule
	Impact of boundary correction on algorithm performance

	Applications – Twitter bot detection
	An overview of Twitter bot detection
	Dataset description
	Data exploration & establishing a baseline classifier
	Applying the proposed method

	Summary

	Spiking Neural Networks
	Introduction
	Properties of biological networks
	Spiking neural networks
	Training the SNN with backpropagation
	Signal propagation in the time-to-first-spike SNN

	Overcoming the limitations of the model
	Reducing the layer processing time
	Numerical instability resulting from absolute time event representation
	Relaxing the neuron firing constraint
	Signal propagation rules with multiple inputs & multiple outputs (MIMO)

	Applications – Twitter bot detection
	Preprocessing
	SNN training objective
	Training setup & results

	Summary

	Siamese Spiking Neural Network
	Introduction
	Spike train similarity
	Siamese neural networks

	Siamese SNN training objective
	Earth Mover's Distance

	Exploring the properties of the Siamese SNN
	Data preprocessing
	MNIST digit classification
	Spike train embedding visualization
	Hidden layer activation sparsity
	Classifier time-performance

	Applications – CREDO artefacts rejection
	CREDO experiment description
	Data preprocessing
	Results & discussions

	Summary

	Event Sequence Classification for Multivariate Time Series
	Introduction
	Event-triggered sampling
	Inductive loop vehicle magnetic profiles (VMP)

	Vehicle type identification based on the VMP signal
	Choosing the signal-to-spike encoding parameters
	Vehicle type identification with the MIMO SNN

	Summary

	Conclusions and Future Work
	Bibliography

