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Abstract 

Intelligent Control System for Mobile Robot 

Ravi Raj 

Modern mobile robots are developed to assist or substitute human personnel in complex 

control and planning operations and jobs, including object manipulation, expert assistance in a 

range of sectors, outdoor navigation, security surveillance, fire-fighting in unknown terrain 

exploration, and urban area driving. Even for those with specialized training in robot coding, 

developing a control structure for the robots that are used to carry out these activities is often a 

challenging approach, requiring the generation of a unique controller by hand for every specific 

operation. The developer must intentionally consider the wide variety of scenarios that the robot 

might experience in difficult situations. It might prove more beneficial for the robot to discover 

how to perform certain activities on its own rather than having to be already programmed for 

every activity. This dissertation examines the learning technique of robots as well as addresses 

difficulties related to the intelligent control system of mobile robots for autonomous navigation. 

We examine how the mobile robot acquires knowledge through expert presentations. This 

approach is based on the natural human tendency to imitate. When mobile robots are offered 

instances of conventional actions, they can gain information from this data and apply their 

knowledge to all possible scenarios that are not included in the instances. Using an 

artificial neural network, we integrated the inference function inside the robot controls. The 

mobile robot will acquire knowledge of how to navigate on its own after an appropriate number 

of instances. 

We study the independent learning capability of mobile robots in this dissertation in the 

absence of trained demos for autonomous navigation. Modern reinforcement learning 

algorithms are employed in this study for training mobile robots through interactions 
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with mobile robots. We analyze a mobile robot through simulation that uses reinforcement 

learning to acquire information about possible rewards in different contexts. Additionally, an 

artificial neural network has been integrated to perform the quick generalization function. The 

robots need to try to comprehend the fundamental principles and rewards of the expert demos 

in this experiment, in addition to learning how to associate with states and activities. In 

comparison to conventional techniques, we are assisting the learning convergence in a much 

shorter quantity of episodes by using all the previous state-action pairings that were recorded 

through the interaction process to train the mobile robot. Based on this proposed technique, 

experimental findings demonstrated reliable and accurate effectiveness in autonomous 

navigation tasks for mobile robots. We therefore suggest that the advancement of mobile robot 

learning technology, compared to conventional robot programming, has a promising future 

ahead of it and will be beneficial and serve us more effectively. 
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Streszczenie 

Inteligentny system sterowania robotem mobilnym 

Ravi Raj 

Nowoczesne roboty mobilne opracowano, aby pomagać lub zastępować personel ludzki 

w złożonych operacjach kontrolnych i planistycznych oraz zadaniach, w tym manipulacji 

obiektami, pomocy eksperckiej w różnych sektorach, nawigacji zewnętrznej, nadzorze 

bezpieczeństwa, gaszeniu pożarów eksploracji nieznanego terenu i prowadzeniu pojazdów po 

obszarach miejskich. Nawet dla osób posiadających specjalistyczne przeszkolenie w zakresie 

kodowania robotów opracowanie struktury sterującej dla robotów używanych do wykonywania 

tych czynności jest często trudnym podejściem, wymagającym ręcznego wygenerowania 

unikalnego sterownika dla każdej konkretnej operacji. Twórca musi celowo wziąć pod uwagę 

szeroką gamę scenariuszy, których robot może doświadczyć w trudnych sytuacjach. Dla robota 

korzystniejsze może okazać się odkrycie, jak samodzielnie wykonywać określone czynności, 

zamiast konieczności programowania go do każdej czynności. Niniejsza rozprawa doktorska 

bada technikę uczenia się robotów, a także uwypukla trudności związane z inteligentnym 

systemem sterowania robotami mobilnymi do autonomicznej nawigacji. Badamy, jak robot 

mobilny zdobywa wiedzę poprzez prezentacje eksperckie. Podejście to opiera się na naturalnej 

ludzkiej skłonności do naśladowania. Kiedy robotom mobilnym oferuje się przykłady 

konwencjonalnych działań, mogą one uzyskać informacje z tych danych i zastosować swoją 

wiedzę do wszystkich możliwych scenariuszy, które nie są uwzględnione w tych przypadkach. 

Korzystając ze sztucznej sieci neuronowej, zintegrowaliśmy funkcję wnioskowania ze 

sterownikami robota. Robot mobilny po odpowiedniej liczbie ćwiczeń nabędzie wiedzę 

dotyczącą samodzielnego poruszania się. 
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W tej rozprawie badamy zdolność niezależnego uczenia się robotów mobilnych przy 

braku przeszkolonych demonstracji autonomicznej nawigacji. W tym badaniu wykorzystano 

nowoczesne algorytmy uczenia się przez wzmacnianie do szkolenia robotów mobilnych 

poprzez interakcje z robotami mobilnymi. Analizujemy robota mobilnego poprzez symulację, 

która wykorzystuje uczenie się przez wzmacnianie w celu uzyskania informacji o możliwych 

osiągnięciach w różnych kontekstach. Dodatkowo zintegrowano sztuczną sieć neuronową 

realizującą funkcję szybkiej generalizacji. Roboty muszą zrozumieć podstawowe zasady i 

efekty wynikające z demonstracji ekspertów w tym eksperymencie, a także nauczyć się 

kojarzenia ze stanami i czynnościami. W porównaniu do technik konwencjonalnych, 

wspomagamy konwergencję uczenia się w znacznie krótszej liczbie odcinków, wykorzystując 

wszystkie poprzednie pary stanu i działania, które zostały zarejestrowane w procesie interakcji 

w celu szkolenia robota mobilnego. W oparciu o proponowaną technikę wyniki eksperymentów 

wykazały niezawodną i dokładną skuteczność w zadaniach autonomicznej nawigacji dla 

robotów mobilnych. Sugerujemy zatem, że rozwój technologii uczenia się robotów mobilnych, 

w porównaniu z konwencjonalnym programowaniem robotów, ma przed sobą obiecującą 

przyszłość, będzie korzystny i będzie nam służył efektywniej. 
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Chapter 1 

Introduction 

 

1.1. Background and Motivation 

1.1.1. Mobile Robots 

A robot is a technological device, particularly one that can be programmed by a computer 

and is capable of performing a complex variety of tasks autonomously. A robot might be 

controlled by an internal control system or by an external supervision system. While some 

robots have been designed to mimic human shapes, the majority of robots are task-executing 

devices that prioritize utility over creative design. Robots are evolving quickly from industrial 

settings where they are physically confined to restricted workspaces to more sophisticated 

devices that can carry out difficult tasks in our everyday lives. These days, autonomous robots 

are becoming more useful in industrial and commercial scenarios. Conventional industrial 

robots, including manipulators and robotic arms, are mostly static and are utilized in production 

facilities with strictly regulated environments. 

As artificial intelligence (AI) technology develops quickly, MRs are changing and getting 

better at jobs that were too difficult or complicated to complete in the past, such as security, 

heavy-weight transport, exploration of space, and several more. Mobile robots (MRs), on the 

other hand, are robotic systems designed to be able to perform tasks in uncontrolled 

surroundings and possess the capacity to navigate freely using devices, including wheels. With 

developments and investigations in the domains of electronics, computer programs, artificial 

intelligence (AI), computers, scientific study, and technological advances, modern robotics 

companies are developing increasingly sophisticated MRs [1]. An MR is a unique kind of 
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software-controlled device that can identify its surroundings and carry out a predetermined 

objective by using sensors and additional tools, including a camera, Lidar, and many more. To 

complete a predetermined job, an AMR usually comprises a total of three actions: perception 

(sensing), plan and inference (procedure), and mobility (act). 

 

Fig. 1.1: Several applications of mobile robots in different fields 

Excellent examples of the MRs are drones, humanoid robots, entertainment 

pets, unmanned rovers, and so on. The potential of the AMR to operate independently and their 

cognitive skills, which allow them to respond and make decisions depending on their perception 

of their surroundings, set them apart from other robots. MRs are frequently employed in many 
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different sectors, including military operations and surveillance (see Fig. 1.1 (a)), space 

exploration (see Fig. 1.1 (b)), underwater exploration (see Fig. 1.1 (c)), and medical assistance 

(see Fig. 1.1 (d)). Developments in AMRs additionally provide solutions for difficult jobs that 

were previously thought to be exclusively human-attainable. 

The traditional MR navigational method lacks the capacity for independent learning. MRs 

need to have the skill competent to independently traverse unfamiliar terrain while avoiding 

stationary and dynamic obstacles. The variety of basic issues that MRs can address with ease 

ranges from challenging computational assignments to wonderfully logical ones. This wide 

range of issues is undoubtedly one of the most important and exciting aspects of MRs. Many 

heuristic and traditional techniques are applied to the development of MRs' operational 

methodology. The way MRs operate within tropical regions is, for academics, a particularly 

crucial aspect of developing them for practical applications. When situations get more 

complicated, traditional methods can get antiquated and might no longer yield the optimal 

outcomes. The MR usually proceeds via three stages to do a predefined task: mobility (activity), 

planning of paths and synthesizing (procedure), and perceptions (monitoring). An essential 

stage in MR travel is determining the most efficient paths to take in order to arrive at the 

destination while avoiding obstacles. To start experimental research on MR autonomous 

navigation, it is necessary to study the brief history of MR evolution up to the current state-of-

the-art study. 

1.1.1.1. History of Mobile Robots 

Numerous studies have been carried out on the subject of robotics science throughout the 

past century. The Czech playwright Karel Capek's "Rossum's Universal Robots" from 1920 is 

credited with introducing the term "robot" to people worldwide [6]. An extensive study has 

been conducted on the subject of robotics technology over the past half-century. In 1942, author 
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Isaac Asimov introduced the term "robotics" in the small chapter "Runabout." The place of 

robots in human civilization was better articulated by Asimov. The operational laws of MRs 

have been outlined by Asimov. Asimov proposed three laws for robotics, and all of them remain 

relevant today [7]. 

1) First Law: A robot must never intentionally injure a human person or allow one 

to do so by remaining still. 

2) Second Law: Except in situations where the first law is breached, robots ought to 

perform the tasks assigned to them by humans. 

3) Third Law: Save for situations when the first and second rules collide with the 

circumstances, a robot should attempt to preserve itself. 

The field of cybernetics was founded by American mathematician Norbert Wiener, who 

made substantial contributions to the advancement of MRs. The design and development of 

autonomous robots is significantly aided by cybernetics. 

 

Fig. 1.2: A picture of Miso-1, Albert Ducrocq's robot, from the 1950s [8] 
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Information theory was originally developed by American electrical engineer Claude 

Elwood Shannon. In 1950, Shannon's mouse was invented. Shannon's mouse looked like a 

robotic mouse with an electromechanical relay network that allowed it to navigate through a 

labyrinth. This mouse is credited with being the first AI gadget. In the 1950s, the Ducrocq 

family designed a remote-controlled automobile and computerized animal, which is known as 

Miso. The cybernetic creature Miso evolved in five distinct versions, which are referred to as 

M1, M2, M3, M4, and M5, respectively [8]. The robot Miso-1 and its designer, Albert Ducrocq, 

are seen in Fig. 1.2, which was taken in the 1950s. 

 

Fig. 1.3: Shakey the Robot and Charles Rosen in 1983 [9] 

The applications of software technology and cybernetics within the domain of robotics 

science lead to the creation of autonomous and intelligent robots. Without including Shakey the 

robot, which originated in the late 1960s, it is impossible to depict the history of MRs. This was 

the first MR with the ability to perceive and influence its environment. The Defense Advanced 

Research Projects Agency (DARPA) provided funding to the engineers who worked at Stanford 

Research Institute (SRI) under the guidance of Charles Rosen to develop the Shakey robot [9]. 

Fig. 1.3 shows a picture of Charles Rosen and Robot the Shakey. 
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As research and development in the domains of electronics, software, computers, AI, and 

sciences continues, modern robotics enterprises are turning out increasingly sophisticated MRs. 

These days, AMRs are more useful in industrial and production settings. The academic field of 

AI was founded in 1956. Research in AI often aims to address the advancements in information 

technology, perception, acquisition, reasoning, participation, organizing, natural language 

processing, autonomous movement, and object manipulation [10]. AI and robotics, together, 

constitute an extremely effective combination for automating tasks both inside and outside of a 

commercial setting. The finest examples of contemporary robots that employ AI technology for 

how they operate are UAVs. Due to the advancements in AI technology, MRs have become 

increasingly sophisticated and are currently used in a wide range of applications, including mail 

delivery, medical treatment, pattern recognition, defense, freight, security, infrastructure 

assessment, passenger transit, and many more. Engineered Arts designed "Ameca," the most 

sophisticated and smart humanoid robot that debuted during the Consumer Electronics Show 

(CES) in January 2022 [11]. This robot incorporates cameras in the eyes and facial recognition 

technologies. Ameca is able to communicate in a language as well as comprehend it. The robot 

"Ameca" picture is displayed in Fig. 1.4. 

 

Fig. 1.4: Image of Ameca humanoid robot [11] 
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1.1.1.2. Types of Mobile Robots 

The most widely recognized definition of a robot is: "A robot serves as a multipurpose, 

reprogrammable manipulator developed to maneuver substances, instruments, and particular 

devices or elements via movements incorporated with parameter programming in the execution 

of numerous jobs," according to the RIA's (Robot Institute of America's) [12]. The first problem 

with movement for MRs is locomotion. Most of the MRs generally work in well-known, 

regulated locations like factories, shopping malls, and other places, but there are times when 

they must move in hazardous, adverse, complex, and unknown settings, including space 

exploration, border surveillance, firefighting, and many more. A key component of an MR 

design is its locomotion system, which is dependent on a variety of technical factors, including 

terrain situations, maneuverability, controllability, stability, and so forth, in addition to the 

robot's intended mode of mobility (e.g., air, water, or land). Based on its locomotion, a robot 

can generally walk, roll over, skate, run, jump, slide, fly, and swim. MRs have been classified 

into the following main groups based on their locomotion [13]: 

1.1.1.2.1. Stationary Mobile Robot 

1.1.1.2.2. Land-based Mobile Robot 

1.1.1.2.2.1. Wheeled Mobile Robot 

1.1.1.2.2.2.  Legged or walking Mobile Robot 

1.1.1.2.2.3. Tracked Mobile Robot 

1.1.1.2.3. Air-based Mobile Robot 

1.1.1.2.4. Water-based Mobile Robot 

These above-mentioned MRs are discussed in more detail with their advantages and 

disadvantages as follows: 
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1.1.1.2.1. Stationary Mobile Robot 

Flexible-arm robotics that does repeated stationary activities are referred to as stationary 

mobile robots. Since all of these robots work in three dimensions, their arm tooling must be 

located using a built-in computer that determines every arm joint's position. These 

robots perform well in settings where repetition is essential to the operation, and they frequently 

work in an efficient manner. Examples of this kind are industrial robots and manipulators. The 

robots have a stable foundation and are made up of a free kinematic chain that includes an end-

effector that is primarily equipped with specialized tools that allow it to execute operations like 

assembling, painting, welding, machining, and other jobs in addition to handling things. This 

category of robots includes Comau, Wittman, Kawasaki, Fanuc, Kuka, Abb, and so on. 

Grasping equipment is another crucial type of stationary robotic system. Grasping is an essential 

component of handling, and initially, the primary purpose of grasping gadgets was to assist 

people in handling duties, these gadgets offer two types of solutions: instruments and 

prostheses. Nowadays, many industries, including manufacturing and agriculture, are now 

using grasping equipment, and as a result of this demand, various robotic arms and finger 

mechanisms have been invented [14]. 

1.1.1.2.2. Land-based Mobile Robot 

Unmanned Ground Vehicles (UGVs) are the typical term used to describe land or house 

mobile robots. These robots can be further classified into the following categories: 

1.1.1.2.2.1. Wheeled Mobile Robot 

A WMR is a vehicle with wheels that can move on its own without the assistance of a 

human operator since it is outfitted with a motor powered by an embedded computer [15]. 
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Wheels are among the most crucial sections for robot mobility, and AMRs are an essential part 

of a complex area of mobile robotics studies that depends on concepts including signal-image 

processing and pattern recognition. These will be essential for distribution, logistics, and 

transportation. For robots operating on smooth, non-rugged surfaces, the application of wheels 

becomes more simple compared to the use of legs or treads and is additionally relatively easy 

to develop, construct, and program. Compared to alternative options, wheel control is simpler 

and results in minimal surface deterioration when wheels are moved. An additional benefit is 

that, because the robot is generally in touch with the ground, WMRs do not pose a significant 

risk for balance problems. 

 

Fig. 1.5: Postural definition of wheeled mobile robot 

The most basic state space model that may provide a comprehensive explanation for 

WMR is the postural kinematic framework. Fig. 1.5 describes where the MR is located on the 

XY plane. In a field of movement for the MR, a random orthonormal inertial standard {0, 𝐼1, 𝐼2}  

is specified. Both a random base {�⃗�1, �⃗�2} linked to the structure and an arbitrary point of 
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reference R within the framework are specified. After that, the three parameters X, Y, and ϴ 

fully define the MR position (P) in equation (1.1) [15]: 

𝑃 = (
𝑋
𝑌
𝜃
)                                                         (1.1) 

1.1.1.2.2.2. Legged Mobile Robot 

A legged mobile robot is a kind of robot that can navigate as a living creature, including 

an insect, quadruped (a creature having four legs), or biped (a creature that has two legs, like 

humans). Usually, these robots utilize control mechanisms, actuators, and sensors to help them 

navigate through different types of situations. Robots with legs can move through a variety of 

environments that wheeled robots might consider difficult, such as slippery surfaces, stairs, or 

impediments [16]. Robots with legs are more flexible when it comes to changing the terrain 

than those with wheels or tracks. They can adapt their stride length and posture to make their 

way through difficult situations. However, there are additional drawbacks to legged robots as 

well, including the consumption of energy, mechanical layout issues, and the complex nature 

of controlling mechanisms. Fig. 1.6 shows a robotic dog ‘Spot’ developed by Boston Dynamics 

that can walk autonomously. 

 

Fig. 1.6: Four-legged robotics dog [17] 
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1.1.1.2.2.3. Tracked Mobile Robot 

A tracked MR is a specific type of robot that runs without legs or wheels by using constant 

tracks, similar to those on tanks. Compared to wheeled MRs, these robot tracks' grip and 

stability enable the robot to traverse a variety of terrains—such as mud, snow, sand, and harsh 

terrain—more successfully, particularly in natural surroundings [18]. When compared with 

wheeled MRs of identical shape, tracked MRs can usually carry larger payloads, which renders 

them appropriate for operations involving the transportation of materials or apparatus. 

Numerous sectors and applications, including mining, exploration, agriculture, disaster relief, 

defense, and environmental monitoring, use tracked MRs. Fig. 1.7 illustrates an image of 

tracked MR known as XBOT, which can be applicable in inspection activities for all-terrain 

and support the Robotic Operating System (ROS). 

 

Fig. 1.7: Model of XBOT tracked mobile robot for all-terrain [19] 

1.1.1.2.3. Air-based Mobile Robot 

A flying robot, also known as an air-based mobile robot, is a kind of mechanical structure 

that uses air propulsion systems like propellers, rotors, or wings to move around and carry out 

activities in three dimensions. These autonomous machines come in a broad range of sizes, 
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shapes, and functions; they can be little drones or massive unmanned aerial vehicles (UAVs) 

utilized for freight shipment, monitoring, and research. Air-based mobile robots can pilot 

themselves independently or wirelessly thanks to technological breakthroughs in AI, computer 

vision, inertial sensors, GPS navigation, and computer vision [20]. This capability opens up a 

wide range of applications in many sectors including search and rescue missions, agricultural 

monitoring, environmental monitoring, infrastructure inspection, aerial photography, and 

videography. Air-based MRs are extremely useful instruments in situations where ground-

based or piloted planes can be risky or unfeasible because of their adaptability and mobility. 

Research and development activities in this quickly developing industry are still motivated by 

obstacles including short battery life, legal limitations, and security and privacy issues. Fig. 1.8 

illustrates a UAV, which is known as MQ-1C Gray Eagle. This UAV is manufactured by the 

General Atomics Aeronautical Systems for combat operations to support the United States 

Army. 

 

Fig. 1.8: MQ-1C Gray Eagle is a UAV [21] 

1.1.1.2.4. Water-based Mobile Robot 

A specific kind of machine called a water-based mobile robot is made to function and 

travel in watery places, including rivers, lakes, and even small areas like containers and 

pipelines. These robots easily navigate over water by using a variety of propulsion techniques, 
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including fins, thrusters, and propellers. Miniature remotely operated vehicles (ROVs) for deep-

sea exploration and observation and massive autonomous underwater vehicles, also known as 

AUVs, for scientific study, meteorological surveys, and underwater mapping are just a few 

examples of the many shapes and dimensions of water-based MRs. These robots collect 

information about the underwater environment, including depth, temperature, marine creatures, 

and water quality, using cameras, sensors, and other instruments [22]. These robots can 

accurately and autonomously traverse underwater settings thanks to sophisticated navigation 

systems, including inertial navigation and acoustic location. Numerous fields and businesses, 

including oceanography, maritime petroleum, and natural gas discovery, monitoring the 

environment, underwater archeology, search and rescue activities, and infrastructural 

surveillance, employ water-based MRs. These robots are essential instruments for exploring 

and comprehending the world's seas and rivers because of their capacity to reach underwater 

habitats in an effective and secure way. Fig. 1.9 represents an AUV which is known as Sentry. 

Sentry "flies" over the bottom to examine topographic characteristics at depths of 6,000 meters 

(3.7 miles) undersea, thanks to its integrated multibeam echo sounder, digital camera, and 

streamlined torpedo design. 

 

Fig. 1.9: Image of an AUV ‘Sentry’ [23] 
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1.1.2. Autonomy of Mobile Robot 

A completely autonomous robot is able to gather information about its surroundings, 

operate for lengthy periods of time without help from people, move any portion of itself across 

its operational area, and avoid hazardous situations for individuals or assets. Additionally, an 

autonomous robot is capable of learning new things, such as how to modify novel ways to carry 

out its job or react to ever-changing environments [24]. Therefore, it is necessary for MRs to 

possess autonomy and intelligence. Additionally, creating algorithms that enable the robots to 

operate independently in unorganized, dynamic, partly visible, and unpredictable settings 

presents a difficulty to scientists trying to address important issues including reliability, real-

time action, and unpredictability (for both actions and sensing). Without navigational 

capabilities, mobility is nearly useless in any of these types of MR applications. While certain 

tasks like housekeeping or tracking can benefit from stochastic navigation, which does not 

require navigation, most research or commercial applications of mobile robots require the 

robots to be able to maneuver with a goal in mind. Therefore, autonomy in navigation is 

essential to the MR's performance and serves as a benchmark for the corresponding technology 

of autonomous MRs. 

An MR navigation duty is to design and implement a course, taking into account the 

avoidance of obstacles, to a predetermined destination using sensor data. There are the 

following five connected competencies that are basically included in MR navigation: 

1) Perception: To gather and analyze sensory data. 

2) Mapping: To use the observed sensory data to build a virtual or environmental framework. 

3) Localization: The method is used in tandem with navigation guidance to determine the 

MR's location inside the spatial mapping. 

4) Path planning: The method to determine whether a route to a destination is ideal or not. 



R. Raj                                   ”Intelligent Control System for Mobile Robot” 
 

27 
 

5) Exploration: The plan that directs the robot to choose its next course of action. 

A robot needs a system that lets it navigate around freely in its surroundings; in other 

words, it has to be capable of recognizing and responding to its surroundings. Robotic sensors 

function as the equivalent of MR vision, allowing MR to understand its location, and exactly 

how it got there, and even make sense of its past movements. The sensors might be movable 

and adaptable, with the goal of monitoring the exterior environmental framework, inertial 

adjustments, and the distance that wheels traveled over the terrain. The sensors can be broadly 

categorized into two categories: exterior state sensors, including infrared, sonar, laser, and 

visual sensors, which offer outdoor knowledge of the surroundings, and inner state sensors, 

including accelerometers and gyroscopes, that give inside knowledge regarding the movement 

of MRs [25]. 

The robot's location in a two-dimensional (2D) space can be determined by analyzing 

information gathered from inbuilt state sensors. Exterior state data from sensors can be 

transformed into information for a surroundings map or utilized to immediately identify an 

object or circumstance [26]. Because of disruptions, readings from sensors are typically 

insufficient and unreliable. Thus, processing sensory information with disruptions is crucial for 

the navigation of MRs. Neural networks can offer some resilience or tolerance for errors for 

sensor analysis of data because of their large number of computing nodes, all of which largely 

have local links. In summary, the autonomous navigational challenge involves mobile robots 

being able to gather sufficient environmental information, analyze it, and take appropriate 

action to maneuver effectively within the environment, often following a predetermined course. 

An essential prerequisite for every automated framework is the capacity to perceive its 

surroundings. The robot bases all of its decision-making about actions on the sensory data it 

receives. 
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1.1.3. Mobile Robot Learning 

It is not generally feasible to train autonomous robots to carry out predetermined tasks 

because unexpected circumstances could arise that the robot is not expected to meet. Currently, 

nevertheless, almost all industrial robots have been pre-programmed and need a precise, 

regulated environment. Such robot reprogramming is frequently an expensive procedure that 

calls for a specialist. Installing robots and reprogramming work becomes easier by allowing 

them to learn activities either by themselves or with assistance from a human trainer. 

Meanwhile, among the most intriguing features of intelligence is the absence of MRs that are 

incapable of learning. Recent studies have indicated a trend toward AI techniques to enhance 

robot autonomy through experience. These techniques can also be technically less costly than 

traditional ones. ML techniques are frequently used to lessen the workload for system engineers. 

As an outcome, learning has taken center stage in contemporary robotics research. The study of 

how robots learn lies at the nexus of robotics and ML. It investigates methods that let a robot 

learn new abilities or adjust to its surroundings using learning techniques. The robot's 

physicality, embedded in an external setting, offers both possibilities to direct the learning 

procedure and unique challenges (such as high complexity and actual time limits for gathering 

information and learning). Although there are many other applications of robot learning, 

including perceiving, planning, and decision-making, our study focuses on teaching control in 

a simulated environment. 

Robot learning includes the application of a wide range of ML techniques, most notably 

learning by imitation, inverse RL, RL, and regression techniques, that are adequately domain-

adapted to enable learning for complicated robotic systems, including humanoid robots, legged 

robots, aircraft, and machines with shaking wings. While traditional AI-based robotics methods 

have frequently tried to manually establish a variety of principles and algorithms that enable 
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robotic structures to comprehend and participate in real life, the foundation of robot learning 

lies in the belief that it is unattainable that humans will be able to accurately predict every 

engaging real-world scenario. All things considered, learning control is the method of learning 

an activity and control technique via trial and error [27]. Two well-liked groups of techniques 

for learning policies for sequenced choice tasks are RL and learning from demonstration (LFD) 

[28]. RL methods are used to tackle Markov decision processes (MDPs), which are sequencing 

choice challenges. The agent learns a policy by experimenting with various behaviors in various 

scenarios and trying to optimize a minimal reward signal. RL has been used in many different 

situations with efficacy. 

A technique for robot/agent learning known as "learning from demonstration (LFD)" 

builds activity or assignment frameworks by using human presentations as input. The field of 

LFD research encompasses a wide variety of methodologies [29]. The LfD method learns 

strategy mappings between states (input) and actions (output) according to the scenarios 

observed in the presentations. These demonstrations tend to be expressed as state-action pairs. 

Another strategy eliminates the requirement for a model or in-depth knowledge of the field by 

offering a mapping between sensory inputs and behaviors that quantitatively represent the 

important goals of behavior [30]. These approaches work effectively in fields where there are 

few resources available to draw lessons from past experiences and adjust to changing 

circumstances. 

1.1.4. Human-Robot Interaction 

A combination of AI in almost every system has contributed to a significant expansion of 

human capabilities in the past decade, including comprehension, awareness, learning, and 

activity. Artificial Intelligence's promising prospects are primarily attributed to human 

interaction with AI. Furthermore, an automated system or other equipment that is completely 
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automatically or manually operated has to collaborate with a human throughout a number of 

automating and support phases. Humans and robots can collaborate or communicate in a variety 

of ways, which is known as HRI. A unique form of human behavior prediction is human activity 

recognition (HAR), which represents a crucial method for HRI and MR movement that avoids 

human collisions [31]. Anticipating human patterns is given less consideration in certain 

contexts where supporting robots may become highly influential, such as offices, homes, 

hospitals, and assisted living facilities [32]. When comparing with urban settings, the primary 

variable agent is staying in designated lanes or following traffic laws. Additionally, the actual 

space is frequently shorter due to limited access points and an increased quantity of perceptive 

obstacles (such as inner walls or blind curves), that initially give the impression that the 

surroundings are nearer. Consequently, there will probably be a greater likelihood of a collision. 

It will become crucial to predict human mobility in dynamic contexts, such as homes and 

companies, for safe and dependable robot navigation. Thus, every assistive mobile robot must 

be built with HAR technologies. Predicting human trajectories is a challenging task; prior work 

has included various mobility situations, scene surroundings, and social interactions. HAR 

technology has been analyzed in [33]. 

1.2. Research Motivation 

Modern autonomous vehicles rely heavily on their capacity for autonomous navigation. 

In 2003, the Defense Advanced Research Projects Agency (DARPA) of the United States 

government intended to accelerate the advancement of the techniques necessary to produce the 

first fully self-driving land vehicles that might complete a significant off-road track in a shorter 

span of duration. This initiative was known as the "Grand Challenge." Robotic cars were to 

complete the challenge in a maximum of 10 hours, covering a 142-mile distance over the 

Mojave desert. The inaugural tournament took place on March 13, 2004. However, no one of 
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the fifteen cars that are taking part has ever finished over five percent of the route. As a result, 

on October 8, 2005, the next DARPA Grand Challenge was launched. Ultimately, five of the 

twenty-three cars completed the race successfully [34]. An important step toward creating 

today's self-driving automobiles has been completed by this robotic vehicle. Two years later, 

on November 3, 2007, autonomous cars were required to complete the "DARPA Urban 

Challenge," which involved traveling 97 kilometers over a simulated urban setting in less than 

six hours while engaging with oncoming traffic, navigating obstacles, and adhering to each 

traffic law. "Boss" was pronounced the victorious car, while "Junior" secured the second 

position [35], [36]. These vehicles were also thought to be the first iteration of the Google 

autonomous vehicle prototype. 

A real-life programmer would utilize their knowledge of the intended target in a standard 

programming instance, and they would have needed to make choices ahead for a while to design 

an MR controller that could react to any condition the MR would encounter, regardless of how 

improbable. Although this type of customized programming is quite effective, it is also costly 

and only works in the scenarios that the human operator has thought of. The entire expensive 

procedure could have to be duplicated if mistakes or unanticipated events occur once the robotic 

device is deployed. Although the aforementioned DARPA challenges were completed in 

unprepared programs, it is difficult to believe that any work that might be assigned could be 

preprogrammed. As a result, robots must possess the ability to acquire information either on 

their own or with assistance. 

This dissertation, which is inspired by Google self-driving vehicles and DARPA 

challenges, focuses on enabling MRs to make thoughtful, logical judgments as well as being 

able to learn brand-new skills and enhance existing ones intelligently. Using this method, robots 

might be trained to deal with uncertain and unpredictable conditions by learning how to deal as 

best they can with uncertainties and unanticipated shifts. 
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The use of MRs is expanding across a number of industries, including production, 

logistics, the agricultural sector, and search and rescue. These robots require being highly 

autonomous and adaptive, with the goal of functioning well in dynamic and unpredictable 

surroundings. MR navigation in real-world contexts might require extremely complicated 

control challenges with dynamic obstacles, shifting topography, and erratic disruptions [37].  

Without the requirement for specific programming or human involvement, RL is a viable 

method for giving robots the capacity to learn from historical experiences and modify their 

actions in response to environmental input. 

The requirement for MRs to connect with humans in a way that is safe, effective, and 

simple is expanding as these robotic devices are incorporated more and more into human 

scenarios [38]. MRs might be taught socially conscious behaviors using RL-based control 

mechanisms. These behaviors include adhering to social standards, deciphering human 

gestures, and changing their actions in response to input from people. Furthermore, RL can help 

multiple robots working in groups along with people collaborate, resulting in more efficient and 

well-coordinated robotic systems. To sum up, the goal of studying RL-based intelligent control 

algorithms for MRs is to improve the adaptability, autonomy, effectiveness, and flexibility of 

robotic equipment in everyday situations. This is going to contribute to the development of 

robot technology and its possible uses in a variety of fields. 

1.3. Thesis Contribution 

The role of intelligent control in self-navigating systems through robot learning using 

sensory information is examined in this doctoral thesis. It is intended that people lacking 

programming skills would be able to more readily expand and customize robotic skills for new 

scenarios. We started our investigation by looking into three important learning algorithms: RL, 

learning without demonstrations, and NNQL. MRs can acquire complex control methods that 
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maximize goals like navigation performance, usage of energy, or job timeliness by utilizing 

techniques like DRL. The following is an overview of this thesis's significant contributions: 

1. The drawback of conventional RL that has drawn the interest of several academics is its 

inability to generalize states that have not been explored yet. NNs are strong supervised 

learning algorithms that can help with this issue because of their strong adaptation 

capabilities. NNs were subsequently added to RL, which significantly enhanced the 

capacity for learning. 

2. The term "imitation" immediately comes to mind as we consider how people pick up new 

abilities or knowledge when they are still very young. Robots ought to have the 

fundamental ability to mimic. This thesis led to the development of an effective policy 

learning technique that enables MRs to learn and adjust to their dynamic surroundings 

without demonstrations. 

3. Autonomous learning is performed satisfactorily whenever specialists are not given ideal 

illustrations. However, non-optimal situations are provided almost all the time. Learning 

through demonstrations in these situations might result in inadequate performance. 

Learning the benefits in proven situations and then generalizing over all un-demonstrated 

contexts is a superior approach. We created a way by incorporating neural networks 

using RL, also known as training instruction, and we were able to produce a quick and 

reliable learning system. 

These three suggested techniques have been used in research involving MR navigation. 

Based on the outcomes, we can confidently say that our techniques were successful in giving 

MRs the ability to learn on their own through experimentation and human demonstrations. 

Ultimately, by creating new algorithms, approaches, or strategies that increase the level of 

adaptability and autonomy of MRs, this thesis will enhance the latest developments in 

intelligent control mechanisms. 
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1.4. The Architecture of Thesis 

This dissertation is further divided into six chapters, which are described below: 

1. Chapter 2 begins by formalizing the theoretical aspects of the RL technique in the control 

system of MR. Further, we described AI, ML, DL, ANN, and DNN in detail. Lastly, we 

described the historical development of RL, the major applications of RL, and the role of 

RL in MR navigation approaches. 

2. Chapter 3 described various pieces of research approaches performed in available 

literature related to the intelligent control system for MR. 

3. Chapter 4 provides the partial observable Markov decision process (POMDP) and the 

Markov decision process (MDP). we further go over a few common dynamic 

programming, or MDP, solution algorithms. 

4. Chapter 5 introduced autonomous MR's capacity for self-learning despite the absence of 

professional demonstrations. We provide a way to extrapolate and optimize the method 

of self-learning using an ANN within the context of RL. We extensively evaluate our 

approach in static as well as dynamic scenarios, using navigational autonomy challenges 

through simulation. The simulation presented in this approach illustrates an effective 

intelligent control technique for the navigation of MR in an environment containing 

different obstacles. The simulation presented in this approach illustrates an effective 

intelligent control technique for the navigation of MR in an environment containing 

different obstacles. The result and discussion provided in the dissertation give deeper 

insights into autonomous navigation in unknown environments using RL. 

5. Chapter 6 provides a comparative discussion of different navigation strategies, including 

RL, PSO, and Thermal navigation. 

6. Chapter 7 provides a conclusion and further research prospects in this field of study. 
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Chapter 2 

Reinforcement Learning 

 

2.1. Artificial Intelligence 

Artificial intelligence (AI) is a technological power that is transforming economic growth, 

upending businesses, and drastically changing how humans interact with computers and 

technology. Fundamentally, AI aims to endow computers with human-like intelligence, 

allowing computers to sense their surroundings, reason, acquire knowledge, and reach 

conclusions on their own. AI's history began in the middle of the 20th century when scientist 

Alan Turing established the discipline's foundation [39]. AI has developed over the years from 

conceptual concepts to practical implementations, thanks to advances in algorithmic creativity, 

data accessibility, and processing capacity. 

Autonomous vehicles, healthcare diagnosis, banking, and personal assistance are just a 

few of the fields where AI has advanced significantly in recent years.  Researchers and 

practitioners are facing issues including interpretability, rights, and responsibility as AI 

develops. To guarantee that AI technologies maximize advantages for humanity as a whole and 

minimize risks, attempts to solve these issues are imperative. The social ramifications of AI, 

including how it might influence jobs, security, morality, and discrimination, have sparked both 

enthusiasm and worries in light of these breakthroughs [40]. Artificial neural networks (ANNs), 

machine learning (ML), deep learning (DL), deep neural networks (DNNs), natural language 

processing, image processing, robotics, and other subfields are among the many subfields that 

fall under the broad category of AI. Fig. 2.1 illustrates the relationship between AI, ML, and 

DL, which shows ML is the subset of AI and DL is the subset of ML. 
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Fig. 2.1: Illustration of the relationship between AI, ML, and DL 

2.1.1. Machine Learning 

A branch of AI called machine learning (ML) focuses on creating algorithms and models 

of statistics that allow computers to carry out operations despite the need for explicit 

programming [41]. In contrast to conventional programming, which determines a computer's 

behavior by explicit instructions, ML systems learn from data by seeing trends and drawing 

inferences or projections from that information. Fundamentally, ML is about giving computers 

the ability to grow and learn from their experiences. Large volumes of information are needed 

for ML algorithms to acquire knowledge. A variety of information, including text, photos, 

statistics, and sensor assessments, might be included in this data. 

ML algorithms are computational models that examine data in an attempt to find trends, 

correlations, or patterns [42]. These algorithms are split into several categories, depending on 

whether they are appropriate for a particular set of activities and data: unsupervised learning, 

semi-supervised learning, supervised learning, RL, and more. ML has applications in many 

different fields, including recommendation systems, computer vision, natural language 

processing, autonomous vehicles, healthcare diagnosis, and financial predictions. It is an 
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effective tool for handling a variety of complicated, unorganized collections of data and is 

versatile enough to solve many different kinds of real-world situations. Fig. 2.2 illustrates the 

relationship between ML and DL, which shows feature extraction and classification steps are 

considered two different steps in ML and a single step for DL. 

 

Fig. 2.2: Illustration of the relationship between ML and DL [43] 

2.1.2. Deep Learning 

DL is an ML approach that teaches computers to do tasks that come effortlessly to people: 

comprehend via illustration. In deep learning, a model created by computers is able to do tasks 

involving explicit classifications from text, audio, or pictures. Models created using DL have 

the capacity to attain greater accuracy, occasionally surpassing human accuracy. The secret to 

autonomous vehicles is DL technology, which enables them to accomplish tasks including 

stopping at a stoplight despite the need for humans. 

DL constitutes an artificial neural network (ANN)-based ML hypothesis. The DL 

approach may be used in machine vision, information mining, supercomputers, detecting fraud, 

language processing, systems for managing customer relations, driverless cars, and HAR [44]. 

For sim-to-real transfer, which involves training robots in virtual settings before deploying them 

in real life, DL techniques are applied. Robots can implement their acquired rules in diverse 

contexts by using domain adaptation strategies, including transfer learning, competitive 
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training, and field variation, that help close the physical distinction between modeling and the 

actual world. DL can be applied for route planning, localization, and mapping challenges related 

to autonomous navigation. 

2.1.3. Artificial Neural Networks 

The use of an artificial neural network (ANN) can be found in data mining and ML. These 

kinds of networks constitute a class of biological neural network models that represent 

quantifiable brain learning. The neural network operating concept is similar to how the human 

brain's neural structure works. An ANN's structure resembles a network of linked neurons that 

communicate with each other. The most significant components of AI technologies, which are 

mostly found in control systems, are ANNs. ANNs are composed of uniform sequences of 

neurons, or units, linked through unique synapses, or weights [45]. Fig. 2.3 illustrates the basic 

structure of ANN, which contains input, hidden, and output layers, respectively. 

 

Fig. 2.3: Illustration of the basic structure of ANN 

2.1.4. Deep Neural Networks 

A set of ML models known as "deep neural networks" (DNNs) is motivated by the 

composition and operations of the brains of humans. DNN is a subset of ANNs, a larger class 

of computer models made up of linked nodes, or "neurons," arranged in layers [46]. Artificial 

neurons are the fundamental components that construct neural networks. After processing 
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signals from input through various computations, every neuron generates an output signal. 

Neural connections containing correlated weights link neurons in neighboring layers. Such 

weights, which are acquired throughout training, establish the link's durability. 

Usually, an activation function is applied to every neuron based on the weighted total of 

its data [47]. By doing this, the network gains non-linearity, which enables it to recognize 

intricate patterns in the input. DNNs are trained by a technique known as backpropagation. This 

method involves comparing the predictions made by the network with the real targets and 

propagating the error back via the network. Next, using optimization procedures such as 

gradient descent, the weights are modified to reduce the error. DNNs play a major role in DL, 

a branch of ML that concentrates on learning data interpretations. Natural language processing, 

audio recognition, image recognition, and other applications have all seen impressive results 

with DNN. Fig. 2.4 shows the basic structure of DNN. Generally, DNN contains multiple 

hidden layers, which means it must have more than one hidden layer. 

 

Fig. 2.4: Illustration of the basic structure of DNN 

2.2. History of Reinforcement Learning 

From fundamental concepts in psychology and control systems to real-world applications 

in AI and robotics, the long history of RL illustrates a path that continues to shape the 
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discipline's potential perspectives. RL is a branch of ML that studies how agents, or decision-

makers, may pick up decision-making skills by interacting with their surroundings. There are 

two significant, rich, and lengthy strands for the origins of RL that were studied separately 

before coming together to form the current RL. One theme that emerged from the psychology 

of animal learning is trial-and-error learning. This line of reasoning permeates a portion of the 

first AI research and was responsible for the very first 1980s rise of RL [48]. The other part 

focuses on the optimum control issue and how function values and dynamic programming are 

used to solve it. This topic did not require learning in the majority of cases. The expectations 

center on a third, less distinguishable path that deals with temporal-difference techniques, like 

those employed in the tic-tac-toe instance in this section, even if the first two components have 

been mainly independent. The current area of RL was created in the second half of the 1980s 

when all three elements came together. 

Temporal-difference learning's history in the context of RL is a major breakthrough. 

Unlike other learning techniques, temporal-difference learning is motivated by the distinction 

among spatially subsequent estimations of the same variable, such as the chance of victory 

during the tic-tac-toe case [49]. The concept of auxiliary reinforcements, which is central to 

learning in animal psychology, is where temporal-difference learning got its start. When an 

incentive is combined with an initial reinforcer, like a meal or discomfort, it becomes a second 

reinforcer and acquires comparable reinforcing qualities. 

The current era of RL is characterized by a progression from conceptual foundations to 

real-world uses across a variety of fields, propelled by advancements in processing power, 

multidisciplinary teamwork, and algorithms. The comprehension and regulation of issues 

employing Markov Decision Processes (MDPs) witnessed significant advances in RL [50]. 

Deep Reinforcement Learning (DRL) emerged as a result of the confluence of DL and RL, 

garnering significant attention and propelling advancements across several fields. Research is 
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still being conducted to expand the capabilities of RL and tackle issues pertaining to its wider 

use in sophisticated real-world situations. 

2.3. Major Applications of Reinforcement Learning 

RL is a category of ML that focuses on control and decision-making problems. As a way 

to accomplish certain goals, an agent needs to communicate with its surroundings in order to 

learn how to make decisions [51]. Because RL can learn optimal activities via trial and error, it 

has gained widespread applications in many different disciplines. Fig. 2.5 describes that RL has 

a wide range of applications in different fields, including robotics, physics, automobiles, control 

systems, business, banking, game playing, and the health sector. These applications highlight 

RL's adaptability and strength within a range of sectors, rendering it a useful instrument for 

resolving difficult control and decision-making issues in real-world environments. 

 

Fig. 2.5: Illustration of major applications of RL 
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2.4. Role of Reinforcement Learning in Navigation 

Machine learning might be classified as reinforced, unsupervised, or supervised based on 

the type and quantity of data received on the assignment or process. Building an operational 

architecture that represents the acquired relationship between inputs, outcomes, and system 

variables represents the goal of supervised learning when algorithms for learning get feedback 

in the shape of a labeled data set. The goal of unsupervised learning is to categorize data sets 

into distinct categories according to the degree of familiarity among the input samples without 

giving the technique any feedback. Lastly, through interaction with the surroundings, an agent 

or decision maker can develop a policy to maximize a long-term reward through the use of RL, 

a focused target learning technology. 

On-policy and off-policy learning control techniques are the two groups of algorithms for 

RL that are implemented for resolving optimal control issues [52]. On-policy techniques assess 

or enhance a similar policy that serves as the basis for decisions. In off-policy approaches, those 

two functions are divided. The behavior policy, which represents the policy that is implemented 

to produce data, cannot be linked to the estimate policy, also known as the objective policy, 

which is the strategy that is assessed and refined. The data utilized in this phase might be 

generated offline through implementing the behavioral policy to the variations within the 

framework, but the objective strategy learning process is conducted online. Since a collection 

of experience gained from implementing a behavior policy can be used to modify multiple value 

functions belonging to other estimating policies, the off-policy approaches are quick and data-

efficient. Additionally, off-policy techniques consider the impact of probe noise required for 

exploration. 

RL is a computer method for comprehending and automating decision-making and goal-

directed learning. Its focus on an agent learning by interacting directly with its surroundings—
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without the need for perfect models of the world or example supervision—sets it apart from 

other methods of computation. As the first area to take these computational challenges carefully, 

RL aims to attain long-term objectives by learning from contact with its surroundings. A 

scholastic structure that describes the state, action, and reward of the learning agent's 

relationship with its surroundings is used in RL. The goal of this structure is to provide a 

straightforward representation of the key elements of the AI challenge. Explicit aims, a feeling 

of ambiguity and unpredictability, and an awareness of cause and consequence are some of 

these characteristics [53]. RL is essential to MR navigation because it allows robots to interact 

with their surroundings and acquire nearly optimal or optimal navigational strategies. RL needs 

a well-specified state space that encompasses pertinent details regarding the robot's 

surroundings. Sensor inputs, robot locations, obstacle locations, and target locations are often 

included in navigation tasks. 

The robot's potential actions, including forward motion, left and right turns, stopping, and 

so on, make up the action vector in RL. The actions used are determined by the particular 

navigational challenge and abilities of the robot. RL navigation requires the development of 

suitable reward functions. The robot receives information about its behaviors via the reward 

function, which helps it behave in the desired ways. Effective and secure navigation is 

encouraged with a well-thought-out rewards system. 

Navigation policy learning might be accomplished through the use of RL techniques, 

including actor-critical methods, Q-learning, policy gradient methods, and deep Q networks 

(DQN) [54]. These techniques use data from rewards and changes in state during explorations 

to modify the robot's policies. Robots can adjust to diverse obstacles, variations in the 

environment, or human needs without having to be completely trained through the continuous 

learning techniques used in RL frameworks. In situations where many robots are moving in a 

single environment, multi-agent RL approaches facilitate collaboration, the avoidance of 
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collisions, and the effective usage of resources. Through the utilization of such RL features, 

MRs can acquire the ability to independently traverse sophisticated surroundings, adjust to 

varying situations, and accomplish navigation objectives effectively while maintaining security 

and stability. 

When it comes to MR navigation, RL is a robust ML technique that has earned a lot of 

curiosity. Robots can adjust and enhance their navigational behaviors using RL, in contrast to 

conventional rule-based or programmed techniques, by utilizing input from their surroundings. 

Determining the state space, developing suitable action spaces, generating reward functions to 

encourage desired actions, and using learning algorithms for modifying the robot's navigational 

strategy in response to observations are important elements of RL in MR navigation [55]. MRs 

can traverse dynamic and complicated surroundings, adjust to shifting situations, avoid 

obstacles, accomplish goals, and improve navigation courses by utilizing RL approaches. These 

are critical characteristics for autonomous robots in a range of practical uses. To be able to 

provide effective and secure navigation, the robot will ultimately develop a policy using RL—

a mapping between states and actions—that optimizes accumulated rewards over time. 
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Chapter 3 

Literature Survey 

 

In recent years, many researchers have been working in the field of autonomous 

navigation to enhance the capabilities of MR, and many of them are using RL as a primary 

technique to do this work. Alitappeh et al. [56] describe a navigational robotic system that is 

intended to perform the dual duties of avoiding obstacles and line following in partially known 

surroundings that contain obstacles. This system performs robustly by using distance sensors 

led by a CNN model to avoid obstacles and a strategically located camera for an accurate line 

following a model of long short-term memory (LSTM). The results of the experiments show a 

significant improvement in performance, proving that the suggested method is effective in 

producing better results in difficult robotic navigation situations. Tsuruta et al. [57] emphasize 

MRs' autonomous navigation, utilizing DRL for interpreting photographs from monocular 

cameras. Since semantic division can minimize the disparities between surroundings by 

breaking down complicated RGB pictures into segmented images, it is used to address real-

world recorded image analysis. In this work, a semantic segmentation system with an RL model 

is obtained for MR navigation. These models are implemented in an intelligent navigation 

system built on a robot operating system (ROS). Experiments conducted in real-life contexts 

validate the theoretical models' effective applicability. 

Saxena et al. [58] provide a time-dependent policy that will enable robust signal temporal 

logic (STL) description fulfillment in continuous state space using a feasible RL method, using 

the idea for funnel functions within this article. This study uses several contexts to illustrate the 

usefulness of the suggested technique on many STL tasks. Jiang et al. [59] propose a method to 

overcome low navigation efficiency by utilizing a unique type of graph convolutional network 
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(GCN) called message-passing GCN (MP-GCN) to encode either human-human interaction or 

HRI. The suggested approach, called MP-GatedGCN-RL, represents asymmetrical interactions 

by combining a unique message-passing function with edgewise gating processes in 

comparison with current approaches that represent interaction among humans and robots 

equally. This suggested method is evaluated using ETH/UCY pedestrian datasets that mimic 

various scenarios, such as avoiding collisions, forming groups, crossing, diverging, and more. 

Kumaar et al. [60] developed a route plan in a dynamic environment using RL. The 

recommended approach makes use of an interactive topographical mapping of the surroundings 

to acquire the very first pathways based on the deep Q-learning method. Depending on how 

similar the prior and novel settings are, this technique switches between experience-based 

training and exploration-based training. The Turtlebot3 MR within the Gazebo simulator is used 

to evaluate the system, which is built using the ROS platform. Based on the original 

topographical map of various service contexts, the results of the experiment demonstrate that 

the RL method of learning knows all paths with an accuracy rate of more than 98%. 

Tongloy et al. [61] describe an asynchronous DRL approach that has been modified for 

MR navigation using supervised auxiliary duties. In this work, the TensorFlow-based hybrid 

Asynchronous Advantage Actor-Critic (A3C) method is implemented on the CPU or GPU. 

Robot location assessment and depth estimation are examples of supervised auxiliary duties. 

The simulated MR demonstrates the capacity to identify locations on a map and learn to travel 

using just input from unprocessed RGB images. Williams et al. [62] provide a model predictive 

control (MPC) method based on information theory that can handle generic nonlinear behavior 

and complicated cost constraints. Multi-layer neural networks are frequently used as dynamical 

models because of the strategy's universality, and this MPC technique incorporates them to 

tackle model-based RL challenges. This technique is evaluated both on real hardware in intense 

driving difficulties and in simulation using a cart-pole swinging up and quadrotor navigating 
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task. Experimental findings show that the algorithm can operate at the highest level in this 

study using the information gathered from the system. Liu et al. [63] show the challenge of 

figuring out how to combine and transfer robot expertise so that they are easily adapted to novel 

settings and make effective utilization of existing expertise. This work presents Lifelong 

Federated RL (LFRL), a learning framework for navigational instruction for cloud systems of 

robotics, as a solution to the issue. An information-fusing approach is presented in this research 

to upgrade a cloud-deployed shared model. Subsequently, efficient techniques for transfer 

learning in LFRL are presented. Tests demonstrate that LFRL significantly boosts RL's 

effectiveness for robot navigation. 

Cang Ye et al. [64] suggest a neural-fuzzy system that combines stages of both fine and 

coarse learning. During the initial stage, the member functions of both inputs and outputs are 

concurrently found using a supervised learning technique. Once there has been enough training, 

the RL algorithm is used for finer learning, which adjusts the membership function in the output 

variables. A novel approach to learning that strengthens exploration and makes use of a 

variation of Sutton and Barto's framework. This two-step tuning method allows the MR to 

navigate without collisions. Thananjeyan et al. [65] offer a method for safe RL that incorporates 

learned recovery zones. One major barrier keeping RL from being widely used in real life is 

safety. Learning new activities in unknown situations necessitates significant exploration, while 

safety dictates restricting exploration. The Recovery RL algorithm manages this trade-off by 

dividing the objectives of increasing task effectiveness and constraint fulfillment into two 

regulations: an activity regulation that just enhances the assignment reward and a recovery 

regulation that directs an agent towards security when constraints are probable. Recovery RL 

uses offline information to acquire knowledge about constraint-breaching regions prior to 

regulation learning. Based on the results, it appears that Recovery RL trades off assignment 
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accomplishments and violating constraints 2–20 times more effectively in simulation 

environments and three times more effectively in real-world tests. 

Jiang et al. [66] present a 3D visual navigation system using neuromorphic RL targeting 

micro-aerial vehicles (MAVs) equipped with depth cameras. Using a previous map as a guide, 

conventional visual navigation techniques for MAVs often compute a feasible route that meets 

the criteria. Although these approaches suffer from a number of problems, including an 

excessive reliance on computer power and a lack of resilience in novel situations. This study 

presents a neuromorphic RL technique (Neuro-Planner) that integrates DRL and spiking neural 

networks (SNN) to enable MAV 3D visual navigation using a depth camera in an effort to 

address these issues. According to the paper, this is a pioneering effort to combine DRL with 

neuromorphic computation to solve the MAV 3D visual navigation challenge. Wu et al. [67] 

provide an information-theoretic normalization factor in the RL to improve target-driven visual 

exploration using the DRL's cross-target and cross-scene adaptations. The regularization 

enhances the collaboration shared by an agent's perception of visual transformations and 

navigation behaviors, leading to better navigation decision-making. Using this manner, the 

agent learns a variational generative framework to represent the interaction between action and 

observation. The agent uses its present perception and navigational objective to create 

(visualize) the future perception determined by the model. Through the process of analyzing 

the present and anticipated future observations, the agent gains the ability to comprehend the 

link of causality among navigation acts and variations in its assessments, allowing it to 

anticipate the subsequent navigational action. 

Hu et al. [68] suggest a unique collaborative exploration approach with multiple MRs 

that, when compared to traditional techniques, lowers the total mission execution time and 

energy expenses. With the goal of effectively steering the networked robots throughout the 

cooperative activities, a low-level goal monitoring level and a higher-level decision-making 
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level are combined to create a hierarchical control framework. By allocating distinct goal sites 

to each robot, the stochastic Voronoi partitions used in the development of the collaborative 

research strategy limit the number of exploration regions that are repeated. A combined 

collision-avoiding method based on DRL is subsequently suggested to cope with unexpected 

obstacles in unexplored surroundings. This approach allows the control strategy to acquire 

knowledge from human presentation information, thereby enhancing its efficiency and learning 

speed. Zhang et al. [69] provide a policy gradient potential (PGP) method that learns the best 

collaborative approach with the most global reward by using PGP as a data resource for the 

approach updates instead of the gradient themselves. Although the matrix of payoffs and the 

integrated approach are frequently unattainable for learning agents in real life, the efficiency 

metric in this study is the likelihood of receiving the optimal reward. The crucial locations 

related to every perfect coordinated action are asymptotically steady when every element 

activity of each ideal collaborative action is special, according to a theoretical study using the 

PGP algorithm for a continuous framework containing a similar desired recurring event. 

Multiagent reinforcement learning (MARL) has made substantial use of the gradient-based 

technique. Based on the accumulated reward for the quantity of time spent during a single 

episode, the PGP algorithm works better than the other algorithms, according to the data. 

Wang et al. [70] offer a unique hybrid obstacle avoidance controller technique to provide 

an adaptively secure movement trajectory for autonomous systems. Initially, a barrier function 

is incorporated inside the cost function, allowing the barrier-avoidance issue to be effectively 

represented through an infinite-horizon maximum control issue. This allows system security 

for clarification utilizing forward invariance. Subsequently, a combination of state-following-

based estimation and model-based policy repetition is offered as a robust RL paradigm. This 

learning architecture is accomplished using the actor-critic framework, which is based on 

current time information and extended experienced information. In this study, actor networks 
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generate adaptable control strategies through gradient presentation, while critic networks are 

modified using gradient-descent adaptation. The Lyapunov approach is then used to 

conceptually investigate weight convergence and system stability. Lastly, a nonlinear unicycle 

dynamical structure and a 2D singular integration scheme are used to show the suggested 

learning-based controller. Yin et al. [71] suggest a distributed multi-robot route selection 

technique for DRL using multi-critic twin delayed deep deterministic policy gradient (AMC-

TD3). Using an asynchronous training process and a multi-critic system, this technique 

improves upon the primary GRU-Attention-Driven TD3 approach. This technique is very 

flexible for different contexts since it can acquire an end-to-end navigational strategy without 

depending on precise maps or any localized data. Simulation findings show that this suggested 

method outperforms standards in various contexts with varying robot populations and degrees 

of complexity. 

Nan et al. [72] suggest using an integration of a depth estimation model and a monocular 

camera in place of a cheaper 2D LiDAR and provide a modified version of the Common 

Encoder Self-Attention Soft Actor Critic (SESA-SAC) method enabling MRs to navigate 

indoor without collision. To enhance robot learning performance in crowded scenarios, this 

approach gathers 200 episodes' worth of expert information and stores it inside a loop buffer. 

Without any prior training, this work uses a random selection from both expert and exploration 

data to perform training. This research introduces a channel-wise self-attention framework and 

layers of standardization in the network to acquire greater characteristics and improve the 

efficiency of training. Antonelo et al. [73] present an extensive framework for reservoir 

computing (RC) learning that might be utilized to instruct mobile robots to navigate in both 

easy and complicated, partly apparent unknown situations. By allowing the recurring portion of 

the network—known as the reservoir—to remain constant and just train the linear reading 

output layer, RC offers an effective method for training recurring neural networks. The idea of 
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a navigational attractor, or activity that might be learned and then implanted in the reservoir's 

highly dimensional environment, is the foundation for the RC architecture. The stochastic robot 

actions, which consist of a sensory-motor pattern, might be linearly differentiated through the 

highly dimensional nonlinear domain of the dynamic’s reservoir, allowing for the learning of 

numerous actions. 

Xue et al. [74] present a DRL technique based on the double Q-learning network (DQN) 

to help MRs acquire autonomous navigation and collision avoidance skills. Goal location, 

obstacle dimension, and location are examples of inputs, while the robot's trajectory path is an 

example of an output. For global navigation, classical MRs often need real-time, rapid, precise 

simultaneous localization and mapping (SLAM) systems. This research aims to address the 

possibility that, once the first globally viable route has been determined, the route might be 

divided into finite parts with sub-goals. The suggested approach relies on applying DRL to 

guide the robots as they sequentially reach the subgoals. Studies demonstrate that the suggested 

approach can guide the MRs to the intended destination without hitting any obstacles or other 

MRs, and the strategy has been effectively implemented on a real robot platform. Li et al. [75] 

introduce SARL*, a more sophisticated iteration of the socially attentive reinforcement learning 

(SARL) technique, to enable human-aware indoor navigation. DRL has made significant 

progress in producing human-aware navigation strategies recently. Despite this, there are 

several drawbacks to the practical applications: the environment's simplicity ignores obstacles 

besides people, and the learned navigational strategies are restricted to specific training-related 

distances. To attempt to address the issues, this study enhances the existing SARL technique by 

adding a dynamic regional setting targets system and a map-based secure activity region. 

Pambudi et al. [76] suggest a fuzzy approach to state minimization in RL for MRs that 

avoids obstacles. The challenge in solving and avoiding obstacles using RL is determining the 

optimal number of states. RL becomes challenging to implement when situations arise that the 
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MR might not have imagined since there are an infinite number of states. It is necessary to apply 

fuzzy to lower processor performance, generalize the situation, and remove the amount of state 

trouble. Simulation results indicate that the highest level of performance is produced by the 

reinforcement spot that uses a change of states and five angle zones of the sensor. Liu et al. [77] 

created a 3D simulation setting to allow DRL-based robot navigation in a crowded pedestrian 

area. This work incorporates Gazebo, the Social Force Pedestrian Simulator, stable baselines, 

and the ROS navigation stack into its simulation environment. This simulation environment 

relies on the Gazebo modeling framework to gather the extensive environmental data 

surrounding the robot. This paper describes the ROS navigating framework to enable the usage 

of conventional path-planning techniques. This study provides Steady baselines, a set of 

enhanced adaptations of RL algorithms that utilize Open AI Standards, to facilitate the calling 

of the existing popular RL algorithms. 

Cui et al. [78] propose an efficient map representation that offers adequate structural data 

within a suitable receptive space, and the path-extended graph is proposed. It can subsequently 

be included in a hierarchy-based policy for increased adaptability and performance. The path-

extended graph avoids the burden of redundant data by including the compact shape of the 

threshold design and environmental architecture enabling a large-scale perception. Using a 

lower-level motion controller which manages the planning of paths and avoiding collisions and 

a higher-level endpoint decision policy that leverages DRL, this hierarchical policy resolves 

long-range decision-making. Experiments conducted in real-life situations and simulators show 

that this strategy works better than competing strategies in minimizing duplicate movement and 

achieving efficient goal-attaining, particularly in complicated contexts. Huang et al. [79] 

emphasize techniques of planning paths using sampling with inadequate supervision. This work 

uses DL to execute variable sampling on sample-based approaches with an emphasis on 

locations where optimum pathways are more probable to exist. The goal is to improve both path 
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reliability and computing efficiency. In particular, the challenge of semantic division is 

considered to be the creation of diverse sample zones. Here, diverse sample zones are predicted 

using a variety of map information. This paper provides an attention-guided approach for non-

uniform sample planning of paths, which draws inspiration from DL attention processes. Online 

modeling estimation, offline dataset creation, and training of models make up the learning-

driven planning of paths procedure. On the other hand, creating offline datasets frequently 

requires a lot of effort and resources. This paper suggests a weakly supervised approach to 

overcome this difficulty, which calls for the creation of just one truth route for every situation 

in semantic division training. 

Sun et al. [80] utilize multi-head localized awareness modules to enhance the traditional 

actor-critic system and gather local data at an entity level. In this situation, avoiding collision 

mechanisms might concentrate on important environmental elements to function more 

effectively and react to environmental variations faster. Ultimately, the proposed framework is 

expanded to include policy delay (PD) and policy entropy (PE) with the objective to improve 

policy analysis and strengthen policy. Comprehensive test outcomes demonstrate that this 

technique may provide collision-free, quicker guide pathways to avoid collisions in extremely 

dynamic situations. Xu et al. [81] provide a general Multi-Reward Architecture (MRA) strategy 

that might be used to enhance state-of-the-art MRA techniques because automating the time-

dependent priority task for branches is therefore essential. First, in order to enable MRA to 

acquire knowledge from every sub-reward section while retaining the expertise offered by the 

primary reward, this research introduced a policy section that matched the primary reward 

function. The Asynchronous Advantage Actor Critic (A3C) method is subsequently employed 

in this study to determine time-sensitive weights for each policy section. After that, such 

weights are formed with an instantaneous vector to choose the right policy section that will 

result in a decision. Multiple evaluations have shown that, for four assignments, the 
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recommended approach significantly outperforms three conventional MRA techniques in terms 

of episode time, episode reward, score difference, and success rate. 

Huang et al. [82] propose a new goal-guided Transformer-enabled reinforcement learning 

(GTRL) technique in order to lead the visual depiction to interact with the target data and realize 

effective autonomous travel, where the real-world target states as a source of data have been 

taken. To be more precise, this study proposes employing the Goal-guided Transformer (GoT), 

a unique variation within the Visual Transformer, as the foundation for a perception system and 

pre-training using specialist prior knowledge to increase the data effectiveness. The decision-

making system subsequently implements an RL algorithm, which generates decision 

instructions based on the goal-oriented image description provided by GoT. Consequently, this 

method encourages the scene description to focus primarily on attributes related to the 

objective, significantly improving the information effectiveness in the DRL learning procedure 

and improving navigational accuracy. Bai et al. [83] examine an adaptive RL controlling issue 

for a certain type of discrete-time, no-strict feedback system. Secondly, an RL-based govern 

adapting control technique is implemented using a backstepping approach to accomplish 

optimum control, as well as the multigradient recursive (MGR) technique is used for estimating 

the weight vectors. This is achieved by describing a compensating term for adjusting the 

controller along with using the feature from the radial-basis-function neural network (RBFNN). 

Lastly, the Lyapunov theory ensures the reliability of the control systems and establishes the 

semi-global uniformly ultimately bounded (SGUUB) nature of every signal in the system with 

closed loops. Two simulation scenarios that use the maritime vessel's course-keeping system 

demonstrate the reliability of this technique. 
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Chapter 4 

Markov Decision Processes for Robotics 

 

4.1. Introduction 

Creating completely self-aware agents that communicate with their surroundings to 

acquire optimal behaviors while becoming better over time by using trial and error represents 

one of the main objectives of the area of AI. From robots that can perceive and respond to their 

environment to solely based on software agents that can communicate with media and natural 

language, creating AI systems that are sensitive and capable of learning remains a problem. RL 

provides an analytical mathematical foundation of experience-driven self-learning [84]. The 

use of ML approaches to robot control issues has advanced rapidly in the last several years. ML 

enables an agent to resolve an issue by learning from sample data or previous experience. Under 

supervised learning, the environment instructs the learner on what action to take for each and 

every input, giving the learner a clarified objective for each and every one of them.  

 

Fig. 4.1: Illustration of the Reinforcement Learning technique describes how a learning agent 

interacts with the environment. 
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As seen in Figure 4.1, RL usually takes place in an interactive environment. As a learning 

agent interacts within an originally unfamiliar environment, it gets instant feedback in the form 

of a reward and an interpretation of the state. After that, it computes a course of action and 

finally takes it. The environment changes towards an alternate state as a result of this activity. 

The procedure is then repeated when the agent obtains the latest presentation and the associated 

reward. The environment in RL is usually designed as a Markov Decision Process (MDP), with 

the prospective purpose being to optimize the overall reward by learning an approach to control. 

The learner in RL receives only partial feedback on their decisions. As a result, in the context 

of RL, the learner functions as a decision-making agent who acts in the surroundings and is 

rewarded (or penalized) for their efforts to resolve an issue. It must eventually figure out the 

optimal course of action, or the collection of steps that optimizes the overall reward, through a 

series of trial and error sessions [85]. Lastly, an agent or decision maker can develop a strategy 

to maximize an extended reward by interaction with the surroundings through the use of RL, a 

focused on objectives learning technology. The fundamental foundation of the MDP and RL in 

robotics is covered in this chapter. 

4.2. Markov Decision Processes 

The definition of MDP is a probabilistic method of decision-making that models the 

selection process of an unpredictable system using a framework of mathematics in situations 

where the outcomes are either arbitrary or under the control of a decision-maker who takes 

successive decisions over a period of time. MDPs use several factors, including the 

environment, agent behavior, and rewards, to determine the best course of action for the system 

to take next. A serial decision-making issue where an agent needs to choose a set of activities 

that optimizes reward-based criteria is described by a MDP [85], [86]. Initially, an MDP is 

abbreviated as equation (4.1): 
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                                          𝑀 = {𝑆, 𝐴, 𝑇, 𝑟, 𝑦}                                                               (4.1) 

Where, 

▪ S = {𝑠1, …… , 𝑠𝑁  }, is a finite number of state N which symbolises the changing 

surroundings. 

▪ 𝐴 = {𝑎1, …… , 𝑎𝑘}, is a collection of k possible actions that an agent might carry 

out. 

▪ 𝑇: 𝑆 × 𝐴 × 𝑆 → [0,1], is a transition model or function of transition probability, 

where the probability of state transition is denoted by 𝑇(𝑠, 𝑎, 𝑠′) whenever 

utilizing action 𝑎 ∈ 𝐴 for state 𝑠 ∈ 𝑆 directing towards state in state 𝑠′ ∈ 𝑆, which 

means 𝑇(𝑠, 𝑎, 𝑠′) =  𝑃(𝑠′|𝑠, 𝑎). 

▪ The discount factor is denoted by 𝑦 ∈ [0, 1]. 

▪ 𝑟: 𝑆 × 𝐴 → ℝ, is a reward function having a finite overall value by 𝑅𝑚; 𝑟(𝑠,𝑎) 

represents the instant reward received when action 𝑎 ∈ 𝐴 is implemented in state 

𝑠 ∈ 𝑆. 

The agent-environment interaction shown in Figure 4.1, given an MDP M, proceeds as 

follows: Let, the current time is denoted by 𝑡 ∈ ℕ, the environment random state is denoted by 

𝑆𝑡 ∈ 𝑆, and the action taken by agent time t is denoted by 𝐴𝑡 ∈ 𝐴. Upon selection, the action is 

transmitted to the system, causing a transition as mentioned inequation (4.2) [85], [87]: 

                                                  (𝑆𝑡+1, 𝑅𝑡+1)~𝑃(. |𝑆𝑡, 𝐴𝑡). |                                         (4.2) 

In specific, 𝑆𝑡+1 is arbitrary and 𝑃(𝑆𝑡+1 = 𝑠
′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎) = 𝑇(𝑠, 𝑎, 𝑠′) keeps true for 

any 𝑠, 𝑠′ ∈ 𝑆, 𝑎 ∈ 𝐴. Moreover, 𝐸[𝑅𝑡+1|𝑆𝑡, 𝐴𝑡]  = 𝑟(𝑆𝑡, 𝐴𝑡). The agent subsequently selects 

another action 𝐴𝑡+1 ∈ 𝐴, analyzes the subsequent state 𝑆𝑡+1 and reward 𝑅𝑡+1, and repeats the 
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procedure. The transition model T is specified by the series of state-action pairings, according 

to the Markovian hypothesis by equation (4.3) [85]: 

                       𝑃(𝑆𝑡+1|𝑆𝑡, 𝐴𝑡, …… , 𝑆0, 𝐴0) = 𝑃(𝑆𝑡+1|𝑆𝑡, 𝐴𝑡).                                           (4.3) 

Transitions between states might be probabilistic or predictable. A particular action for an 

existing state usually leads to a similar subsequent state for a predictable situation; in the 

uncertain case, however, the subsequent state is random. Finding a theory for selecting actions 

that optimize the projected total reduced reward becomes a learning agent's objective as 

equation (4.4) [85]: 

𝑅 =∑γ𝑡𝑅𝑡+1

∞

𝑡=0

                                                               (4.4) 

Rewards obtained later on are significantly less deserving than those obtained at the 

beginning if γ is smaller than 1. 

4.2.1. Policies and Value Functions 

The agent chooses its course of action based on a unique feature known as policy. Policies 

can be defined as a mapping 𝜋: 𝑆 × 𝐴 → [0, 1] that designates to every 𝑠 ∈ 𝑆 a distribution 

𝜋(𝑠, . ) over A satisfying ∑ 𝜋(𝑎|𝑠)𝑎∈𝐴 = 1, ∀𝑠 ∈ 𝑆. 

For any 𝑠 ∈ 𝑆, there exists a deterministic constant policy, 𝜋(. |𝑠) is focused on an 

individual action, that means at any time 𝑡 ∈ ℕ, 𝐴𝑡  = 𝜋(𝑆𝑡). A function that converts each 

condition into a distribution of probabilities over the range of feasible actions 𝐴𝑡  ~ 𝜋(. |𝑆𝑡)  is 

known as a stochastic static policy. Π represents a category for all stochastic static policies. 

The following procedure is followed when implementing a policy: Initially, a state known 

as S0 is formed. Subsequently, an action A0 = π(S0) is proposed by policy π and executed. With 

the help of reward function 𝑟 and transition function T, a transition is generated to state S1, 
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containing possibilities 𝑇(𝑆0 , 𝐴0 , 𝑆1 ) and received a reward 𝑅 = 𝑟(𝑆0 , 𝐴0 , 𝑆1 ). This 

transition process continues, generating a sequence 𝑆0 , 𝐴0 , 𝑆1, 𝑆1 , 𝐴1 , 𝑆2, 𝑆2 , 𝐴2 , 𝑆3,....., which 

is shown in Fig. 4.2. 

 

Fig. 4.2: Illustration of finite MDP decision network. 

Value functions quantify the degree to which an agent is optimally situated in a particular 

state by evaluating states (or state-action sequences). Value functions assess the agent's 

perceived utility in a certain state by evaluating states or state-action sequences. For the 

purposes of this discussion, "how good" is interpreted as the projected future rewards—more 

specifically, the expected return. Naturally, the agent's potential rewards are contingent upon 

the behaviors it undertakes today. Value functions are therefore specified in relation to specific 

policies. In the context of a π policy, a value function is expressed by a function 𝑉𝜋: 𝑆 → ℝ, 

which assigns to every state the anticipated total of rewards that the agent is going to get up on 

initiating policy π execution via the state shown in equation (4.5) [85], [87]: 

𝑉𝜋(𝑠) → Eπ[∑ 𝛾𝑡∞
𝑡=0 𝑟(𝑆𝑡, 𝐴𝑡)|𝑆0 = 𝑠],       ∀𝑠∈ 𝑆                              (4.5) 
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The unknown variable 𝑆𝑡 denotes the state during time t, while the unknown variable 𝐴𝑡 

corresponds with the action performed at the same point within time and is like this, 

𝑃(𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠) = 𝜋(𝑠, 𝑎). (𝑆𝑡, 𝐴𝑡)𝑡≥0 is the series of arbitrary state-action pairings produced 

when the policy π is put into practice. A static policy's value function might alternatively be 

sequentially expressed as equation (4.6) [85], [87]: 

𝑉𝜋(𝑠) = Eπ[∑ 𝛾𝑡∞
𝑡=0 𝑟(𝑆𝑡, 𝐴𝑡)|𝑆0 = 𝑠] 

                   = Eπ[𝑟(𝑆0, 𝐴0) + ∑ 𝛾𝑡∞
𝑡=1 𝑟(𝑆𝑡, 𝐴𝑡)|𝑆0 = 𝑠] 

                                            = 𝑟(𝑠, 𝜋(𝑠)) + Eπ[∑ 𝛾𝑡∞
𝑡=1 𝑟(𝑆𝑡, 𝐴𝑡)|𝑆0 = 𝑠]                    (4.6)  

                                      = 𝑟(𝑠, 𝜋(𝑠)) + γEπ[∑ 𝛾𝑡∞
𝑡=0 𝑟(𝑆𝑡, 𝐴𝑡)|𝑆0~ 𝑇(𝑠, 𝜋(𝑠), . )] 

                  = 𝑟(𝑠, 𝜋(𝑠)) + 𝛾 ∑ 𝑇(𝑠, 𝜋(𝑠), 𝑠′)𝑉𝜋𝑠′∈𝑆 (𝑠′), 

Where state s containing an action 𝜋(𝑠). 

When considering the unpredictability of a stochastic strategy π(s), V π(s) can 

alternatively be expressed explicitly as equation (4.7) [85], [87]: 

𝑉𝜋(𝑠) = ∑ 𝜋(𝑠, 𝑎)(𝑟(𝑠, 𝑎) + 𝛾∑ 𝑇(𝑠, 𝑎, 𝑠′

𝑠′∈𝑆

)𝑉𝜋(𝑠′))                   (4.7) 

𝑎∈𝐴(𝑠)

 

Similarly, the basic action-value function of a policy π, 𝑄𝜋: 𝑆 × 𝐴 → ℝ, is described as 

equation (4.8) [85], [87]: 

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋[∑ 𝛾𝑡∞
𝑡=0 𝑟(𝑆𝑡, 𝐴𝑡)|𝑆0 = 𝑠, 𝐴0 = 𝑎],                                    (4.8) 

Thus, for any 𝑡 > 0, St will be distributed in accordance with 𝜋(𝑆𝑡, . ). In conclusion, we 

identified the benefit function linked to 𝜋 as equation (4.9): 
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                                            𝐴𝜋 = 𝑄𝜋(𝑠, 𝑎) − 𝑉𝜋(𝑠)                                                  (4.9) 

The optimal policy, represented by the symbol 𝜋∗, is one that optimizes the predicted total 

discounting reward across every state. There exists a single optimal policy with each finite 

MDP. The definitions of the optimum action-value function 𝑄∗ and the optimum value function 

𝑉∗ are shown in equations (4.10) and (4.11) [87]: 

𝑉∗(𝑠) = sup
𝜋
𝑉𝜋(𝑠),     𝑠 ∈ 𝑆                                                          (4.10) 

𝑄∗(𝑠, 𝑎) = sup
𝜋
𝑄𝜋(𝑠, 𝑎),     𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴                                       (4.11) 

Furthermore, the subsequent equations (4.12) and (4.13), relate the best value- and action-

value functions. 

𝑉∗(𝑠) = sup
𝑎∈𝐴

𝑄∗(𝑠, 𝑎),     𝑠 ∈ 𝑆                                                          (4.12) 

𝑄∗(𝑠) = 𝑟(𝑠, 𝑎) + 𝛾∑ 𝑃(𝑠′|𝑠, 𝑎)𝑉∗(𝑠′)

𝑠′∈𝑆

,     𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴                (4.13) 

It is well known that the Bellman optimality equations are satisfied by 𝑉∗ and 𝑄∗, which 

are abbreviated as in equations (4.14) and (4.15) [87], [88]: 

𝑄∗(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾∑ 𝑃(𝑠′|𝑠, 𝑎)

𝑠′∈𝑆

Max
𝑏∈𝐴

𝑄∗(𝑠′, 𝑏),                             (4.14) 

𝑉∗(𝑠) = 𝑟(𝑠, 𝑎) + 𝛾Max 
𝑎∈𝐴

𝑟(𝑠, 𝑎) + 𝑉∗(𝑠′),                                        (4.15) 

A policy that complies with ∑ 𝜋(𝑎|𝑠)𝑄(𝑠, 𝑎) =𝑎∈𝐴 Max
𝑎∈𝐴

𝑄(𝑠, 𝑎) at every state 𝑠 ∈ 𝑆 

insatiable while comparing with 𝑄 function. It is widely recognized that all insatiable policies 

with respect to 𝑄∗are ideal, which means these policies might be leveraged for generating all 
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static optimal policies. Here, we offer a few significant findings on MDP as abbreviated in the 

below-given theorems [85]: 

Theorem 4.1 (Bellman equations): Lets consider 𝑀 = {𝑆, 𝐴, 𝑇, 𝑟, 𝛾} is an MDP and a 

policy is given as 𝜋: 𝑆 × 𝐴 → [0,1], then, ∀𝑠∈ 𝑆, 𝑎 ∈ 𝐴, 𝑉
𝜋, 𝑎𝑛𝑑 𝑄𝜋satisfies as following given 

equations (4.16) and (4.17) [85], [87]: 

𝑉𝜋(𝑠) = 𝑟(𝑠, 𝜋(𝑠)) + 𝛾∑ 𝑇(𝑠, 𝜋(𝑠), 𝑠′)

𝑠′∈𝑆

𝑉𝜋(𝑠′),                                 (4.16) 

𝑄𝜋(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾∑ 𝑇(𝑠, 𝑎, 𝑠′)

𝑠′∈𝑆

𝑉𝜋(𝑠′),                                         (4.17) 

Theorem 4.2 (Bellman optimality): Let us consider 𝑀 = {𝑆, 𝐴, 𝑇, 𝑟, 𝛾} is an MDP and a 

policy is given as 𝜋: 𝑆 × 𝐴 → [0,1], then, π is the optimal course of action with M if and only 

if, ∀𝑠∈ 𝑆, which is described in the following given equation (4.18) [85], [87]: 

𝜋(𝑠) = 𝑎𝑟𝑔 Max 
𝑎∈𝐴

𝑄𝜋(𝑠, 𝑎)                                                      (4.18) 

Where the probability of transition 𝑇(𝑠, 𝑎, 𝑠′) = 𝑃(𝑠′|𝑠, 𝑎). 

4.2.2. Partially Observable Markov Decision Processes 

In an MDP setup, the agent needs to be able to acquire accurate environmental state details 

at all times. However, given that the agent sees the environment through inadequate and 

restricted sensors and that data gathered in perception alone is insufficient to determine the 

state, this hypothesis might not prove true in real life. To deal with these situations, partially 

observable Markov decision processes (POMDPs) [89], were developed. A POMDP represents 

technically a tuple {𝑆, 𝐴, 𝑇, 𝑂, 𝑍, 𝑅}, where an MDP is {𝑆, 𝐴, 𝑇, 𝑅}, the set of perceptions or 

observations is abbreviated as 𝑂, and the observation function is represented by 𝑍 (where, 
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𝑍(𝑜, 𝑠, 𝑎) represents the possibility of observing 𝑜 ∈ 𝑂, while the structure has entered state 𝑠 

and the activity which brought it into such state will be 𝑎). An MDP's extension is called 

POMDP. An agent cannot explicitly view the fundamental state, yet an MDP is supposed to 

govern its dynamics in a POMDP framework for an agent decision procedure. Numerous real-

world sequencing decision-making steps might be modeled by the POMDP system because of 

its sufficiently wide design. Applications cover servicing machines, robot navigation issues, 

and overall planning under ambiguity. The observations might be stochastic, meaning that 

various observations might be made in a similar state, or aliased, meaning that a single 

observation might be made in many states. As such, it is not possible to infer the system's state 

using the data. Alternatively, an observation might be regarded as proof of the state. Having 

faith state as shown in equation (4.19) [87], [90], which represents the agent's perception of the 

embedded state, is a distribution of probabilities over all feasible states. 

𝑓𝑡 = [𝑃𝑟(𝑠𝑡 = 𝑥0), 𝑃𝑟(𝑠𝑡 = 𝑥
1), …… , 𝑃𝑟(𝑠𝑡 = 𝑥

|𝑠|−1)]𝑇                       (4.19) 

The agent begins with a starting faith state, 𝑓0, and employs Bayes' Rule as shown in 

equation (4.20) [87], [90] to modify its faith state 𝑓𝑡 whenever an action takes place or an 

observation is obtained at 𝑜𝑡+1. 

                                         𝑓𝑡+1(𝑥) = 𝑃𝑟(𝑠𝑡+1 = 𝑠|𝑓𝑡, 𝑎𝑡, 𝑜𝑡+1) 

 =
𝑃𝑟(𝑠𝑡+1 = 𝑠, 𝑜𝑡+1|𝑓𝑡, 𝑎𝑡)

𝑃𝑟(𝑜𝑡+1|𝑓𝑡, 𝑎𝑡)
 

                                                  =
∑ 𝑓𝑡(𝑠

′) 𝑇(𝑠, 𝑎𝑡, 𝑠
′)𝑠′∈𝑆 𝑍(𝑜𝑡+1, 𝑠, 𝑎𝑡)

∑ ∑ 𝑓𝑡(𝑠′) 𝑇(𝑠, 𝑎𝑡, 𝑠′′)𝑠′′∈𝑆 𝑍(𝑜𝑡+1, 𝑠′′, 𝑎𝑡)𝑠′∈𝑆
        (4.20) 

As a result, the faith state 𝑓𝑡+1 is an uncertain function of the action 𝑎𝑡, prior faith state 𝑓𝑡 

and observation 𝑜𝑡+1, which is shown in equation (4.21) [87], [90]: 
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𝑓𝑡+1 = 𝑇(𝑓𝑡 , 𝑎𝑡, 𝑜𝑡+1)                                                   (4.21) 

The likelihood for each observation 𝑜 for the moment in time 𝑡 + 1 might be determined 

using a faith state 𝑓𝑡 at time 𝑡 as expressed in equation (4.22) [87], [90]: 

𝑃𝑟(𝑜𝑡+1 = 𝑜|𝑓𝑡, 𝑎𝑡) =∑∑ 𝑓𝑡(𝑠) 𝑇(𝑠, 𝑎𝑡, 𝑠
′)

𝑠′∈𝑆

𝑍(𝑜, 𝑠′, 𝑎𝑡)

𝑠∈𝑆

           (4.22) 

For a faith state 𝑓𝑡, the anticipated reward to carrying out action 𝑎 is provided as 

abbreviated in equation (4.23) [87], [90]: 

𝑟(𝑎|𝑓𝑡) =∑𝑓𝑡(𝑠)𝑅(𝑠, 𝑎)                                               (4.23)

𝑠∈𝑆

 

Each faith is a state in a Markovian faith state, which makes it possible to describe a 

POMDP as an MDP. Due to the fact that there are an endless number of faiths for every 

POMDP, the resultant Faith MDP will be specified in an infinite state space [91]. A tuple 

containing the faith MDP can be described as 〈𝑓, 𝐴, 𝜏, 𝑟, 𝛾〉, where the array of faith states for 

all POMDP states is denoted by 𝑓, 𝐴 is the identical group of steps as described in POMDP's 

initial version, the faith state transition function is denoted by 𝜏, the way in which a faith states 

are rewarded is denoted by 𝑟: 𝑓 × 𝐴 → ℝ, and the 𝛾 for initial POMDP is equivalent for the 

discount factor 𝛾. 

In faith, MDP, 𝜏, and 𝑟 must be obtained from the first POMDP. In equations (4.24) and 

(4.25), transitions and rewards derived consecutively for every 𝑓, 𝑓′ ∈ 𝑓, 𝑎 ∈ 𝐴 [87], [90]: 

𝜏(𝑓, 𝑎, 𝑓′) = ∑𝑃𝑟(𝑓
′|𝑓, 𝑎, 𝑜)𝑃𝑟(𝑜|𝑎, 𝑓)                                         (4.24)

𝑜∈𝑂

 

𝑟(𝑓, 𝑎) =∑𝑓(𝑠)𝑅(𝑠, 𝑎)                                                                (4.25)

𝑥∈𝑆
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Fig. 4.3. shows the faith states' temporal sequence. The Markov feature suggests that all 

of the data about the present state and, by extension, all of the prospective occurrences, is 

included identically in a similar way in the faith state and the system's whole experience (a 

series of observations and actions). 

 

Fig. 4.3: Illustration of POMDP decision network. 

4.3. Dynamic Programming Approach: Model-Based Techniques 

A technique called dynamic programming (DP) might be used to find the best possible 

policy 𝜋∗ for solving a specific MDP. Dynamic programming makes the assumption that the 

MDP, comprising the reward function and environmental transitional dynamics, is well 

understood [92]. As a result, these belong within the category of model-based learning 
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techniques. Model-free learning techniques, on the other hand, are going to be covered 

subsequent to this chapter and require only the perfect design of surroundings. 

 

Fig. 4.4 (a): Relationship between improvement procedures and policy evaluation [85]. 

 

Fig. 4.4 (b): The policies and value function's progression towards their optimals [85]. 

There are two categories of dynamic programming techniques for MDP solutions policy 

iteration (PI) and value iteration (VI) [82]. Fig. 4.4 (a) and Fig. 4.4 (b) illustrate the generalized 

policy iteration (GPI) concept, which is the fundamental technique shared by both of these 

methods [85]. There are two interacting mechanisms in this principle. In the first phase, policy 

assessments, the value, 𝑉𝜋 is computed, which evaluates the benefit of the present policy π. 

Information on the policy is gathered in the current phase with the aim of computing the 



 R. Raj        ”Intelligent Control System for Mobile Robot” 

 

67 
 

subsequent step, which is the policy enhancement phase. The actions' values are assessed in 

each state within this phase to identify potential enhancements or alternative actions in specific 

states that might be preferable to the ones that the existing policy recommends. Using the data 

in 𝑉𝜋, this stage determines an enhanced policy 𝜋′ from the present policy π. The primary 

objective is to converge on a best-value function and an ideal policy, provided that both 

procedures keep updating every state. 

4.3.1. Policy Iteration 

Between the two GPI procedures, policy iteration iterates. Until an ideal policy of action 

is reached, the process is repeated. In Algorithm 4.1, this procedure is illustrated. It begins (from 

steps 1 to 3) using a randomly generated policy, 𝜋𝑡, and arbitrarily initializes the associated 

value function, 𝑉𝑘, assuming 𝑘 = 0 and 𝑡 = 0, and performing the processes for enhancing 

policies and evaluating policies repeatedly. The process (from steps 5 to 8) of evaluating a 

policy involves figuring out its action value (𝜋𝑡+1) for each state 𝑠 ∈ 𝑆 using computing 

equation (4.17). One effective method for solving this problem iteratively is to use the value 

function 𝑉𝑘 from the preceding policy for initializing the value function for 𝜋𝑡+1. subsequently 

repeating the procedure in equation (4.26) [85], [87]: 

∀𝑠∈ 𝑆: 𝑉𝑘+1(𝑠) = 𝑟(𝑠, 𝜋𝑡(𝑠)) + 𝛾∑ 𝑇(𝑠, 𝜋𝑡(𝑠), 𝑠
′)𝑉𝑘(𝑠

′)

𝑠′∈𝑆

                   (4.26) 

Up to ∀𝑠∈ 𝑆: |𝑉𝑘(𝑠) − 𝑉𝑘−1(𝑠)| < 𝜖, over a certain error criterion 𝜖. Determining (from 

steps 9 to 10) a greedy policy 𝜋𝑡+1 provided the value function 𝑉𝑘 represents the goal of policy 

enhancement in equation (4.27) [85], [87]: 

∀𝑠∈ 𝑆: 𝜋𝑡+1(𝑠) = arg max
𝑎∈𝐴

 [𝑟(𝑠, 𝑎) + 𝛾∑ 𝑇(𝑠, 𝑎, 𝑠′)𝑉𝑘(𝑠
′)

𝑠′∈𝑆

]                  (4.27) 
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The procedure comes to an end when 𝜋𝑡 = 𝜋𝑡−1, at which point 𝜋𝑡 is the optimal policy, 

or 𝜋∗= 𝜋𝑡. All things considered, policy iteration produces a straight line of alternated policies 

and value functions in equation (4.28) [85], [87]: 

𝜋𝑂 → 𝑉𝜋𝑂 → 𝜋1 → 𝑉𝜋1 → ⋯…… → 𝜋∗ → 𝑉0 → 𝜋∗                            (4.28) 

The transitions from 𝜋𝑂 → 𝑉𝜋𝑡  include the policy assessment procedures, whereas the 

𝑉𝜋𝑡 → 𝜋𝑡+1 transformations are accomplished by the policy enhancement procedures. 

ALGORITHM 4.1: ALGORITHM FOR POLICY ITERATION  

Algorithm 4.1: Policy Iteration 

Input: 𝑀 = {𝑆, 𝐴, 𝑇, 𝑟, 𝛾}, is an MDP model; 

     /* Starting */ 

1: 𝑘 = 0, 𝑡 = 0; 

2: ∀𝑠∈ 𝑆: start 𝜋𝑡(𝑠) with a random action; 

3: ∀𝑠∈ 𝑆: start 𝑉𝑘(𝑠) with a random value; 

4: Repeat                                                                              

     /* Starting */ 

5:     Repeat 

6:        ∀𝑠∈ 𝑆: 𝑉𝑘+1(𝑠) = 𝑟(𝑠, 𝜋𝑡(𝑠)) + 𝛾 ∑ 𝑇(𝑠, 𝜋𝑡(𝑠), 𝑠
′)𝑉𝑘(𝑠

′)𝑠′∈𝑆 ; 

7:          𝑘 ← 𝑘 + 1; 

8:     Until ∀𝑠∈ 𝑆: |𝑉𝑘(𝑠)−𝑉𝑘−1(𝑠)| < 𝜖; 

/* Policy enhancement */ 

9:    ∀𝑠∈ 𝑆: 𝜋𝑡+1(𝑠) = arg max
𝑎∈𝐴

 [𝑟(𝑠, 𝑎) + 𝛾 ∑ 𝑇(𝑠, 𝑎, 𝑠′)𝑉𝑘(𝑠
′)𝑠′∈𝑆 ]; 

10:     𝑡 ← 𝑡 + 1; 

11: Until 𝜋𝑡 = 𝜋𝑡+1; 

12: 𝜋∗ = 𝜋𝑡; 
Output: 𝜋∗, which is an optimal policy. 

 

4.3.2. Value Iteration 

One major disadvantage of policy iteration lies in the fact every iteration requires a 

thorough policy assessment. The technique of value iteration involves overlapping procedures 

of enhancement and assessment. The value iteration strategy ends the assessment procedure 

with just a single iteration, as opposed to totally dividing the procedures of enhancement and 
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assessment. As a matter of fact, it incorporates the policy enhancement stage right away into its 

iterations, allowing it to concentrate just on value function estimation. Value iteration, which is 

shown in Algorithm 4.2, might be expressed as a straightforward backup procedure as given in 

equation (4.29). 

∀𝑠∈ 𝑆: 𝑉𝑘+1(𝑠) =  max
𝑎∈𝐴

 [𝑟(𝑠, 𝑎) + 𝛾∑ 𝑇(𝑠, 𝑎, 𝑠′)𝑉𝑘(𝑠
′)

𝑠′∈𝑆

]                 (4.29) 

This process is continued within step 3 to step 6 till ∀𝑠∈ 𝑆: |𝑉𝑘(𝑠) − 𝑉𝑘−1(𝑠)| < 𝜖. At that 

point, the greedy policy in reference to the value function 𝑉𝑘 is the optimal policy (Step 7). The 

value functions that value iteration generates are as follows given in equation (4.30) [82]: 

𝑉0 → 𝑉1 → 𝑉2 → 𝑉3 → 𝑉4 → 𝑉5 → ⋯ → 𝜋∗                           (4.30) 

ALGORITHM 4.2: ALGORITHM FOR VALUE ITERATION 

Algorithm 4.2: Value Iteration 

Input: 𝑀 = {𝑆, 𝐴, 𝑇, 𝑟, 𝛾}, is an MDP model; 

1: 𝑘 = 0; 

2: ∀𝑠∈ 𝑆: start 𝑉𝑘(𝑠) with a random value; 

3: Repeat 

4: ∀𝑠∈ 𝑆: 𝑉𝑘+1(𝑠) =  max
𝑎∈𝐴

[𝑟(𝑠, 𝑎) + 𝛾 ∑ 𝑇(𝑠, 𝑎, 𝑠′)𝑉𝑘(𝑠
′)𝑠′∈𝑆 ] ; 

5: 𝑘 ← 𝑘 + 1; 

6: Until ∀𝑠∈ 𝑆: |𝑉𝑘(𝑠)−𝑉𝑘−1(𝑠)| < 𝜖; 

7: ∀𝑠∈ 𝑆: 𝜋
∗(𝑠) = arg max

𝑎∈𝐴
 [𝑟(𝑠, 𝑎) + 𝛾 ∑ 𝑇(𝑠, 𝑎, 𝑠′)𝑉𝑘(𝑠

′)𝑠′∈𝑆 ]; 

Output: 𝜋∗, which is an optimal policy. 

 

4.4. Reinforcement Learning: Model-Free Techniques 

One ML approach for handling sequential decision problems that might be represented as 

MDPs is called RL [93]. The theoretical framework of RL, which lies between unsupervised 

and supervised learning, addresses acquisition in sequential decision-making scenarios 

involving little or no feedback. A wide family of ML algorithms known as RL seeks to enable 
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an agent to understand how to act in a situation when the sole form of response is a scalar 

reward output. RL is better understood as an issue of learning or a framework compared to 

being defined by certain types of learning techniques [94]. The agent's objective is to do 

activities that will ultimately optimize the reward signal. In contrast to dynamic computing, 

which relies on the existence of a perfect simulation for its surroundings, RL focuses on 

determining the best policy of action in situations where an ideal system is unavailable. 

Reinforcement learning is therefore model-free [95]. Moreover, RL emphasizes estimation and 

partial data, as well as the necessity of analyzing and investigating to get a statistical 

understanding of this unidentified framework, in addition to MDPs. 

A continuous or discrete collection, as well as multiple dimensional behaviors, might be 

represented as the agent and its surroundings in an RL issue to appear within a state 𝑠 ∈  𝑆 and 

capable of doing activities 𝑎 ∈  𝐴. In order to predict prospective states, a state 𝑠 has the entire 

required information regarding the existing circumstance. The method employed to regulate the 

condition of the system is an action 𝑎. The agent additionally receives a reward 𝑅, after each 

step; this reward is a scalar number that is thought to depend upon the observation and state. It 

can also be represented as an arbitrary variable that just relies on such variables. A potential 

reward for completing the navigational goal might be created using the energy costs associated 

with the activities performed and the goals attained. Using RL, a policy 𝜋 linking state and 

action is found which selects an action 𝑎 for an individual state which optimizes the average 

anticipated reward. The probabilistic or stochastic nature of the policy 𝜋 is observed. Every 

time a state is encountered, the previous one always performs an identical action in an 

expression of 𝑎 =  𝜋(𝑠), whereas the latter selects an example using the variation across 

actions, i.e., 𝑎 ∼  𝜋(𝑠, 𝑎)  =  𝑃(𝑎|𝑠). The relationship among state, action, and reward must be 

discovered by the RL agent. Hence investigation is necessary that might either be explicitly 

incorporated into the policy or undertaken independently and solely as an element of the process 
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of learning. Various kinds of reward functions can be employed, comprising rewards dependent 

just on the present state 𝑅 =  𝑅(𝑠), rewards dependent on the present state along with action 

𝑅 =  𝑅(𝑠, 𝑎), with rewards incorporating transitioning 𝑅 =  𝑅(𝑠′, 𝑎, 𝑠). 

Robot learning is aided by the RL framework. Through contact with its surroundings, an 

AI-enabled robot can gain and learn fresh information. This aids in the creation of an 

autonomous robot that can learn on its own [96]. It enhances the robot's overall effectiveness in 

completing operations. 

 

Fig. 4.5: List of applications of RL in robotics sciences [96]. 

The RL architecture facilitates agent learning using environmental interaction. An agent's 

first policy choice at the start of the procedure of learning will instruct the agent to proceed 

within its present state [96]. A complete list of applications of RL in robotics sciences is shown 

in Fig. 4.5. The agent transitions into its subsequent state and receives a reward message from 

the agent-environment relationship. In this case, the field specialist has already created a reward 

signal. In essence, a reward signal measures the quality of the activity in that particular state. 
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The acquired reward signals are applied to modify the policy. The present state's path, actions 

taken in that state, reward signals received, agent transitions into the subsequent state, and 

policy updates are all produced by this agent-environment relationship. A thorough overview 

of RL in robotics can be found in [97]. 

4.4.1. Objectives of Reinforcement Learning 

The main objective of RL is the find the best policy 𝜋 ∗ that links perceptions or state to 

action for the purpose of optimizing the anticipated return 𝐽, which is equivalent to the average 

anticipated reward. A finite-horizon framework will only look to optimize the anticipated 

reward during the subsequent 𝐻 (time-)steps ℎ, or the horizon 𝐻 is abbreviated in equation 

(4.31) [85], [87]: 

𝐽 = 𝐸{∑𝑅ℎ}

𝐻

ℎ=0

                                                   (4.31) 

Model issues where we know the number of steps left might also employ this parameter. 

An alternate method is to apply a discount factor 𝛾 (where 0 ≤  𝛾 <  1) on potential rewards 

is denoted in equation (4.32) [85], [87]: 

𝐽 = 𝐸{∑𝛾ℎ𝑅ℎ}

∞

ℎ=0

                                               (4.32) 

For the learner, two aims naturally emerge. In the initial step, we try to determine the 

optimal plan of action after the conclusion of an interaction or training period. In the second 

scenario, the objective is to optimize the reward during the robot's complete interaction with 

the environment. The learner must initially explore their surroundings and is not informed of 

the optimal course of action, in comparison with supervised learning. With the goal of learning 
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more regarding the incentives and system dynamics, the agent must investigate by taking into 

account actions that it has not utilized before or activities that it is unsure about. It must choose 

between being cautious and sticking to tried-and-true activities that have (slightly) high rewards 

or taking a risk and attempting something new with the aim of finding new methods that have 

greater rewards. The term "exploration-exploitation trade-off" refers to this issue. Requiring 

communication between the learning agent and the surroundings, RL follows the same 

procedure as shown in Fig. 4.1 can be explained in the following ways: 

• Discrete-time steps are used by a learning agent to interact with its surroundings; 

• The agent monitors the surroundings at every step 𝑡, and it is rewarded with 𝑟𝑡 with an 

illustration of the state 𝑠𝑡; 

• An action 𝑎𝑡 afterward performed in the surroundings becomes apparent by the agent; 

• After seeing the novel surroundings, an agent is granted an additional state illustration 

(𝑠𝑡 + 1) along with a corresponding reward (𝑟𝑡+1). 

Off-policy versus on-policy approaches to RL might be differentiated according to the 

manner in which the agent selects an action [98]. Off-policy methods may develop without 

regard to the specific policy that is being used; therefore, they can use an exploratory approach 

throughout the process of learning which differs compared to the intended end policy. On-

policy methods use the existing policy to gather a sample of environmental data. Therefore, 

research has to be included within the policy and dictates how quickly modifications can be 

made. 

4.4.2. Monte Carlo Method 

The practice of sampling is used in Monte Carlo techniques to determine value functions 

and identify the optimal policy [85]. The policy assessment phase within the dynamic 

programming-based approaches described above might be substituted with this process. Monte 
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Carlo approaches do not presume an exhaustive understanding of the surroundings, in contrast 

to dynamic programming (DP). Because Monte Carlo techniques do not require a specific 

transitional function, these processes are model-free [99]. All they need is expertise, which 

consists of sampling states, actions, and rewards via simulation or internet-based interaction. 

One can however achieve optimal conduct by learning via online interactions without any prior 

understanding of the nature of surroundings. 

A model is necessary for learning by simulation background, but DP techniques need the 

framework to produce the whole distributions of probability for every conceivable transition, 

instead of just sample ones. By aggregating sample returns, Monte Carlo techniques are used 

to tackle issues related to RL. They operate on policy, meaning that they carry out 

implementations by putting the existing policy into practice in the system. Value function 

estimations are formed by tracking the frequency of rewards and transitions. For example, 

within an episode situation, one can determine the state-action quantity for a particular state-

action pairing by aggregating all of the values obtained whenever one begins at that point. 

Monte Carlo localization is well recognized as a very dependable technique for estimating 

a mobile robot's position. By analyzing the ranging data obtained from the laser scan to 

reference information generated from the provided environmental map, Monte Carlo 

Localization calculates the robot position [100]. The process of creating a global topology 

mapping involves using the thinning method on the provided global grid mapping, and this is 

often done offline. The Monte Carlo approach is used for robot navigation tasks whenever using 

RL for agent learning from historical data. 

4.4.3. Temporal Difference Method 

DP and Monte Carlo techniques are used to create Temporal Difference (TD) 

techniques[85]. TD learning techniques, in contrast to Monte Carlo approaches, are not required 
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to modify the value function until a prediction of a return is obtained, which might mean waiting 

till the conclusion of an episode. Rather, they wait until the following time step by using 

temporal errors. The variation between the initial estimation and the latest estimation of the 

value function—which accounts for the reward obtained in the most recent sample—is known 

as the temporal error. Prospective predictions serve as the training signals for forecasting during 

TD Learning. Unlike DP techniques, these iterative modifications only consider the samples of 

subsequent states, not the full distribution across the resulting states. Similar to conventional 

Monte Carlo approaches, such techniques are modeling-free because they can be learned 

directly through expertise despite the need for an explanation of the behavior of the 

surroundings. This is because it is not dependent on a modeling of the function of transition for 

determining the value function [101]. In this case, the sampling transitions within the MDP 

must be employed for estimating the value function because it is not possible to calculate 

computationally. 

Watkins et al. (1989) introduced Q-Learning, a model-free, off-policy RL method [102]. 

The transition samples are processed gradually. The Q-value is repeatedly modified using 

equation (4.33) [102]: 

𝑄′(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼(𝑟(𝑠, 𝑎) + 𝛾 max 
𝑏∈𝐴

𝑄( 𝑠′, 𝑏) − Q(𝑠, 𝑎))                     (4.33) 

SARSA is a model-free, representative on-policy RL method [103]. Unlike Q-learning, 

which estimates potential rewards using  max 
𝑏∈𝐴

𝑄( 𝑠′, 𝑏), SARSA employs 𝑄( 𝑠′,  𝑎′) for  𝑎′ the 

action carried out in  𝑠′ under the present policy that creates the change in the sample 

(𝑠, 𝑎, 𝑟,  𝑠′,  𝑎′). In terms of the mathematical estimation process, the update rule is abbreviated 

in equation (4.34) [103]: 

𝑄′(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼(𝑟(𝑠, 𝑎) + 𝛾𝑄( 𝑠′,  𝑎′) − Q(𝑠, 𝑎))                     (4.33) 
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The 𝑄-values will come closer to having probability 1 towards the optimized 𝑄∗ if every 

action is carried out in every state regardless of the number of repetitions and the learning rates 

𝛼 is degraded suitably for every state-activity set (𝑠, 𝑎) [104]. A more rigorous condition for 

the investigation of every state and action is described in [105], which provides an identical 

assurance of converging for SARSA. 

4.5. Model of Mobile Robot 

All experimental studies are carried out in a simulation environment with MATLAB 

2023a software in this thesis. As seen in Fig. 4.6, the MR simulation utilized in this dissertation 

is constructed in the simulation environment under the guidelines of the Festo Didactic MR 

system Robotino. 

 

Fig. 4.6: Robotino: a MR platform for education and research [106]. 

Robotino has an omnidirectional motor, sensors, user interfaces, and adaptable 

expansions that allow for flexible application. Different programming environments enable the 

creation of unique usages. Every distance sensor for the Robotino reads out a level of voltage 

and this value is dependent on its distance from the reflected item. The robot has nine infrared 

vision sensors, positioned across the foundation with an angle of 40° by each other. Because of 
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its omnidirectional drive component foundation, the system can rotate about freely. As a result, 

it is presumed that our MR design has three wheels—two in the rear along one in front. Nine 

distance sensors are included inside the robot to help it measure the separations between objects 

in its immediate environment. 

As seen in Fig. 4.7, the robot's initial point, goal point, and obstacle position make up the 

navigational environment. The robot has predetermined starting and goal positions; regardless 

of stationary or dynamic obstacles it will attempt to reach the destination via a collision-free 

route. 

 

Fig. 4.7: Map of binary occupancy for the navigational task [107]. 

4.5.1. Unpredictability in Mobile Robot 

There will always be unpredictability in MR navigation. Obstacles move randomly, noise 

might hinder sensors, and wheels might skid. MRs or decision-making agents that are 

automated must be able to respond to these kinds of setbacks and unforeseen circumstances, 
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which are often regarded as uncertainties. Although there are many other kinds of uncertainty, 

we focus on two in particular for the sake of clarity and conciseness, which are mentioned below 

[108]. 

• Uncertainty in prediction arises when the results of activities are not entirely 

anticipated. One way to conceptualize this is as a future state of uncertainty. 

• Uncertainty in the present moment defines what is intended by sensing ambiguity. 

This happens, for instance, in robotics with inadequate or insufficient perceptions. 

We also acknowledge the scenario in which robots are completely blind. 

Because the knowledge expressed in the state cannot always accurately predict the effects 

of the behaviors, MRs can be unpredictable and attempt to perform actions in certain states of 

the surroundings that can sometimes result in the anticipated outcome. 
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Chapter 5 

Intelligent Navigation in Unknown and Complex 

Environment Using Reinforcement Learning 

 

5.1. Introduction 

These days, heuristic methodologies are increasingly used by academics due to their 

ability to mimic how people learn behavior [109]. RL is one of the most popular heuristic 

techniques which is widely applied for MR navigation. By using the RL technique, MR can 

determine the path by analyzing previous behavior. The MR sometimes referred to as an agent, 

perceives its surroundings, renders a decision, and receives a reward or a penalty based on the 

decision in response to its surroundings, enabling the effective application of the RL method. 

Once the MR eventually gets a bigger reward, it then adjusts its tactics, and the agent may learn 

different behavioral patterns by creating a large number of rules [110]. Researchers are 

interested in RL due to its robust visualization and ability to acquire knowledge from 

experience, which might help it solve the basic navigational issues experienced by MRs. 

Developing human-like capabilities to enable robotics to do particular tasks seamlessly 

and naturally is a crucial objective in the field of robotics. We examined MDP's function in MR 

navigational instruction in the previous chapter. The robot can gain knowledge from 

demonstrations, and our learning system is able to apply it to the states. However, in specific 

situations, including investigating dangerous areas, the MRs are lacking access to past 

knowledge or examples, and we continue to require them to acquire skills in how to act in new 

environments. This is the primary issue that this dissertation addresses. 

The essential technology that allows us to build robots that, like humans, are capable of 

self-learning new abilities is RL. Through interaction with the environment, RL is made 
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possible. The learners in RL are decision-making agents who act in their surroundings and get 

rewarded for their efforts to complete a task [111]. The agent aims to learn how to choose a 

series of acts, or a policy, that optimizes the entire cumulative reward over time. The signal, 

additionally referred to as reward (or penalize), determines the result of an action. RL might be 

estimated as a MDP. The transition function of state 𝑇(𝑠, 𝑎, 𝑠′) must be known in order to 

implement model-based RL techniques. As an alternative, we concentrate increasingly on 

model-free RL when the surrounding models 𝑇 are unknown, particularly in our research on 

autonomous navigation problems. The entire learning process consists of making trials and 

errors run. Our approach to solving the exploration versus exploitation compromise challenge 

involves using a Boltzmann probability distribution. This means that we must decide whether 

to explore unfamiliar and probably more rewarding states or to take advantage of previous 

experiences and choose actions that are, as soon as we can tell, helpful. Policies are stochastic 

in the given conditions. 

Typically, classical RL methods are used on narrow arrays of states and actions; in other 

words, throughout trial-and-error runs, an agent is permitted to explore a fraction of the states. 

Large-scale state spaces are seen in real-world applications, which presents adaptation and the 

wrath of dimensionality issues. We estimate and extrapolate the value of each state by utilizing 

the framework of neural networks. Initially, after gathering the entire state-action pairings, we 

effectively apply neural networks to build an offline control strategy for MRs. Finally, we 

employ the neural network to perform continuous online learning without deliberately obtaining 

the output labeling. We provide an RL-based autonomous learning technique for situations in 

which learning agents must interact with their surroundings to determine a viable policy in the 

absence of specialist demonstrations. Autonomous navigation challenges involving MRs are 

tested in experimental simulation. 
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5.2. Model-Free Reinforcement Learning Techniques 

Our research focuses on challenges related to RL and robot control, wherein an 

MR operates in an uncertain environment by making successive decisions about actions during 

a series of time steps, with the ultimate goal of optimizing the overall reward. The challenge is 

modeled as a MDP, with the following components: an action space 𝐴, a state space 𝑆, a reward 

function 𝑟 ∶  𝑆 × 𝐴 →  ℝ, and a transition patterns distribution 𝑃(𝑠𝑡+1 | 𝑠𝑡, 𝑎𝑡) that satisfy the 

Markov characteristic 𝑃(𝑠𝑡+1 | 𝑠1, 𝑎1, . . . , 𝑠𝑡, 𝑠𝑡)  =  𝑃(𝑠𝑡+1 | 𝑠𝑡, 𝑎𝑡), with any path 

𝑠1, 𝑎1, 𝑠2, 𝑎2. . . , 𝑠𝑇 , 𝑠𝑇 for state-action area. A random probability distribution policy 

𝜋(𝑠𝑡, 𝑎𝑡) = 𝑃(𝑎𝑡 | 𝑠𝑡) is generated to choose actions and create a path of state, action, and 

reward 𝑠1, 𝑎1, 𝑟1𝑠2, 𝑎2, 𝑟1, . . . , 𝑠𝑇 , 𝑠𝑇 , 𝑟𝑇 for 𝑆, 𝐴, ℝ. 

Using an on-policy approach, one can determine the worth of the policy that guides 

decision-making. Value functions are modified with the outcomes of actions that are carried out 

in accordance with a policy. Off-policy techniques provide the ability to determine the optimal 

policy values without relying upon the agent's behaviors. By utilizing hypothetical activities 

that haven't been attempted yet, it modifies the projected value functions. It impacts anticipated 

value functions through the use of hypothetical, untested actions. Two popular model-free RL 

algorithms are Sarsa [103] and Q-learning [104]. 

5.2.1. Q-Learning 

Q-learning determines the most effective policy for every discrete MDP by optimizing 

the anticipated value of the overall reward across every step, beginning at the present state. It 

can address issues with probabilistic transition and reward despite the need for changes, and it 

does not need system modeling. At its most basic, Q-learning uses tables for preserving data. 

This method breaks down as the variety of states and actions expands because there will be a 
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decreasing chance that the agent will arrive at a given state and carry out a given action. 

Function estimation might be used in conjunction with Q-learning. Because of this, the 

approach might be used to solve bigger issues even in cases where the state region is indefinite. 

In chaotic settings, Q-learning might overestimate the action metrics, which might slow down 

learning, due to the subsequent highest estimated action value being assessed by applying an 

identical Q functionality used for the present decision-making strategy. 

For temporal difference learning, the Q-Learning algorithm acts as a crucial off-policy 

model-free RL technique. RL aims to teach the agent ways to behave within an unfamiliar 

environment by determining the optimal Q-value function which yields optimal results in any 

situation. It is demonstrated that the method convergence occurs with probability 1 to attain a 

near approximate to the action-value functions with every goal policy, providing adequate 

training for every 𝜖-soft policy. In particular, when actions are chosen based on a more 

experimental or perhaps arbitrary policy, Q-Learning will be able to identify the optimal policy. 

In Q-learning, the updating of state-action variables is determined by equation (5.1) [87], [104]: 

𝑄(𝑠𝑡, 𝑎𝑡) ≔  𝑄(𝑠𝑡, 𝑎𝑡) + 𝛽[𝑟𝑡+1 + 𝛿 ma
𝑎
𝑥 𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡)]                  (5.1) 

The following variables are utilized for updating the Q-value: 

• The learning rate is denoted by 𝛽, which lies between 0 and 1. When it has the 

value 0, no updates are made to the Q-values, hence no information is obtained. A 

high score, such as 0.8, indicates that learning might occur rapidly. 

• The discount factor is denoted by 𝛿, which lies between 0 and 1. This simulates 

the idea that rewards in subsequent years are not as valuable as those in the present. 

In mathematical terms, the method can only converge if the discount factor is 

smaller than 0. 
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In this instance, regardless of the policy that is followed, the learned action-value function, 

𝑄, precisely simulates 𝑄∗, the optimum action-value function. This makes the process of 

algorithm assessment simpler and makes early convergence evidence possible. The policy 

remains to have an impact since it controls the state action pairings that have been modified and 

visited. But the only thing needed for proper convergence involves for every pair to keep getting 

updated. It can be demonstrated that 𝑄𝑡 will converge to 𝑄∗ at probability 1 with this hypothesis 

and a variation of the standard probabilistic estimation requirements on a series of step-size 

variables. 

The algorithm 5.1 for Q-learning is presented below. 

ALGORITHM 5.1: ALGORITHM FOR Q-LEARNING 

Algorithm 5.1: One-step algorithm of Q-learning 

1: Start 𝑄(𝑠, 𝑎) randomly; 

2: Repeat (for every episode): 

3:      Start 𝑠; 
4:      Repeat (for every step of the episode): 

5:           Select 𝑎 from 𝑠 utilizing the 𝑄-derived policy; 

6:           Perform action 𝑎, monitor 𝑟, 𝑠′; 
7:           𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛽[𝑟 + 𝛿𝑚𝑎𝑥𝑎′𝑄(𝑠

′, 𝑎′) − 𝑄(𝑠, 𝑎)]; 
8:           𝑠 ← 𝑠′; 
9:      Until the terminal is 𝑠 
10: Until every episode finished. 

 

5.2.2. SARSA 

An on-policy method for TD learning is called the SARSA algorithm. The primary 

distinction among it and Q-Learning is that the Q-values are frequently not updated using the 

optimum reward in the subsequent state. As an alternative, another action is picked along with 

its reward according to a similar policy that chose the initial action. The quintuple 

𝑄(𝑠, 𝑎, 𝑟, 𝑠′, 𝑎′) is used to do the updating process, which is where the term SARSA originates. 

where 𝑟 is the reward seen during the subsequent state, 𝑠, 𝑎 are the latest state-action set, and 
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𝑠, 𝑎 represent the initial state and action. The definition of the Q-value updating rule is shown 

in equation (5.2) [87], [104]: 

𝑄(𝑠𝑡, 𝑎𝑡) ≔  𝑄(𝑠𝑡, 𝑎𝑡) + 𝛽[𝑟𝑡+1 + 𝛿 𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡, 𝑎𝑡)]                  (5.2) 

Designing an on-policy control mechanism depending on the SARSA predictive approach 

is simple. Similar to other on-policy techniques, we continuously estimate 𝑄𝜋 for the action of 

policy 𝜋 while also shifting 𝜋 in the direction of greediness relative to 𝑄𝜋.  

The following is the standard SARSA algorithm 5.2: 

ALGORITHM 5.2: ALGORITHM FOR THE SARSA ALGORITHM 

Algorithm 5.2: On-policy SARSA algorithm 

1: Start 𝑄(𝑠, 𝑎) randomly; 

2: Repeat (for every episode): 

3:        Start 𝑠; 
4:        Select 𝑎 from 𝑠 utilizing the 𝑄-derived policy; 

5:        Repeat (for every step of the episode): 

6:         Perform action 𝑎, monitor 𝑟, 𝑠′; 
7:   Select 𝑎′ from 𝑠′ utilizing the 𝑄-derived policy; 

8:   𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛽[𝑟 + 𝛿𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)]; 
9:   𝑠 ← 𝑠′; 𝑎 ← 𝑎′; 

10: Until the terminal is 𝑠 
11: Until every episode finished. 

 

5.2.3. Approximating Functions using Feature-Based Illustrations 

When dealing with large dimensionality issues, the quantity of states increases 

dramatically, rendering the storage of Q-value databases impractical. In order to apply Q-value 

approximations in practice, features, or the extrapolation of states, must be used. Features are 

functions that associate states to actual values and record significant state attributes. We can 

generate a Q-function, also known as a value function, for every state by utilizing characteristic 

representations and some weights in equations (5.3)  and (5.4) [85], [87]: 
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𝑉(𝑠) = 𝑤1𝑓1(𝑠) + 𝑤2𝑓2(𝑠) + 𝑤3𝑓3(𝑠) + ⋯+ 𝑤𝑛𝑓𝑛(𝑠)                                         (5.3) 

𝑄(𝑠, 𝑎) = 𝑤1𝑓1(𝑠, 𝑎) + 𝑤2𝑓2(𝑠, 𝑎) + 𝑤3𝑓3(𝑠, 𝑎) + ⋯+ 𝑤𝑛𝑓𝑛(𝑠, 𝑎)                    (5.4) 

This representation allows us to summarize our experience into an attractive set of 

statistics. States might have similar characteristics, yet their corresponding values can vary 

greatly. In robotics, handling substantial state-action regions typically requires the application 

of either non-linear or linear depictions of features. 

The 𝑄-function for SARSA might be roughly represented by a linear function of 

characteristics. Although the agent's interactions sampled the reward using the policy that the 

agent is currently following along, compared to sampling the optimal policy, this approach 

employs the on-policy technique SARSA. There are several methods for obtaining a feature-

based 𝑄-function representation. In this part, we offer characteristics to the linear function using 

characteristics derived from the present state and the action. Assume that the state and actions 

have mathematical properties {𝑓1, 𝑓2, …… , 𝑓𝑛}.Therefore, with state 𝑠 and action 𝑎, 𝑓𝑖(𝑠, 𝑎) 

gives a value of the 𝑖-th attribute. These attributes might refer to different mathematical features, 

however, these are usually binary having domain [0, 1]. The weights, 𝑊 =  [𝑊0,𝑊1, . . . ,𝑊𝑛] 

for an array of values. Assume that 𝑊0 is not required to qualify as a particular instance since 

there is a further characteristic 𝑓0 and its value is constantly 1. The 𝑄-function shown in 

equation (5.5) can be represented by these characteristics [85], [87]: 

𝑄𝑊(𝑠, 𝑎) = 𝑊0 +𝑊1𝑓1(𝑠, 𝑎) +⋯+𝑊𝑛𝑓𝑛(𝑠, 𝑎)                                     (5.5) 

To update 𝑄(𝑠, 𝑎), a SARSA experience of the type {𝑠, 𝑎, 𝑟, 𝑠′, 𝑎′} yields an updated 

estimation of 𝑟 +  𝛿 𝑄(𝑠′, 𝑎′). For the purposes of linear regression, this experience can 

potentially be utilized as data. Let 𝜑 = 𝑟 + 𝛿 𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎). 𝑊𝑖- weight can be updated 

by equation (5.6) [85], [87]: 
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𝑊𝑖 ← 𝑊𝑖 + 𝛽𝜑𝑓𝑖(𝑠, 𝑎)                                                           (5.6) 

After that, the SARSA might utilize this update, making the algorithm 5.3. 

ALGORITHM 5.3: APPROXIMATION OF THE LINEAR FUNCTION FOR SARSA 

Algorithm 5.3: Approximation of linear function for the SARSA algorithm 

  Input: 

      𝑓 = {𝑓1, 𝑓2, …… , 𝑓𝑛}: an array of attributes; 

      𝛿 ∈ [0,1]: discount factor; 

      𝛽 > 0: the gradient descent steps size. 

1: Start weights 𝑊 =  [𝑊0,𝑊1, . . . , 𝑊𝑛]; 
2: Perceive present state 𝑠; 
3: Choose  action 𝑎; 

4: Repeat 

5:        Perform action 𝑎; 

6:        Perceive state 𝑠′ and get reward 𝑟; 

7:        Select action 𝑎′ utilizing the 𝑄𝑊-derived policy; 

8:        Let 𝜑 = 𝑟 + 𝛿 𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎); 
9:        For 𝑖 = 0 to 𝑛 do 

10:               Updating weights: 𝑊𝑖 ← 𝑊𝑖 + 𝛽𝜑𝑓𝑖(𝑠, 𝑎); 
11:        End for 

12:        𝑠 ← 𝑠′; 𝑎 ← 𝑎′; 
13:        Until termination. 

  Output: 𝑊∗, which is an optimal weight. 

 

5.3. Q-Learning Technique Based on Neural Network 

The addition we introduced to Q-learning by adding a neural network is presented in this 

part. The ability of Q-learning to analyze the predicted usefulness of various actions without 

having an environmental model is one of its advantages. Stochastic rewards and transitions are 

an issue that Q-learning might solve. RL becomes unpredictable or volatile whenever Q is 

represented by an equation with a nonlinear estimator, such as ANN. The associations in the 

observed series, indicate that modest changes to Q might drastically change the agent's policy 

and the overall distribution of information, and the relationships among Q and the goal values 

are the sources of this unpredictability. 



 R. Raj        ”Intelligent Control System for Mobile Robot” 

 

87 
 

5.3.1. Neural Network 

Layers comprise an artificial neural network (ANN), where every layer is made up of 

many "neuron" nodes. As seen in Fig. 5.1, a neuron acts as a computing unit that is able to 

comprehend inputs, interpret them, and provide an output. Numerous neurons are connected to 

form the entire network. Each circle within this figure corresponds to one neuron. The network's 

leftmost component is known as the input layer, and its rightmost component is the output layer. 

As the values for the intermediate layer of nodes will not be visible within the training array, it 

is known as the hidden layer. Both the inputs and the outputs of the ANN are represented by 

both input and output layers, respectively. We refer to the neurons with the label "+1" as bias 

elements. A bias unit continuously produces +1 and contains nothing to input. The ANN has 

4 input units (not including its bias component), 4 hidden units (not including the bias 

component), and 1 output unit. 

We designate each layer 𝑙 as 𝐿𝑙, with the value 𝑛𝑙 to indicate the number of layers. The 

input layer is the layer  𝐿𝑙 and the output layer is the layer  𝐿𝑛𝑙 in Fig. 5.1, where 𝑛𝑙 = 4. Weights 

are assigned to indicate the linkages that join two neurons, signifying the power of the link 

between the neurons. The weight linked to the link among element 𝑗 in layer 𝑙 and element 𝑖 in 

layer 𝑙 +  1 is represented by the notation 𝑤𝑖𝑗
(𝑙)

, and the variables used within the ANN are 

(𝑤, 𝑏) = (𝑤(1), 𝑏(1), 𝑤(2), 𝑏(2), 𝑤(3), 𝑏(3)). Furthermore, the bias connected to unit 𝑖 within layer 

𝑙 +  1 is denoted as 𝑏𝑖
(𝑙)

. As a result, 𝑤(1)∈ ℝ(4×4)and 𝑤(2)∈ ℝ(1×4). For the purpose of 

controlling their output, every neuron in the neural system has an activation function. The 

activation is 𝑎𝑖
(𝑙)

 for unit 𝑖 within 𝑙-layer. In the layer of input 𝐿1, 𝑎𝑖
(𝑙)
= 𝑥𝑖, the input for 𝑖-th of 

the entire ANN. Also, in other layers, 𝑎𝑖
(𝑙)
= 𝑓(𝑧𝑖

(𝑙)). In this case, 𝑧𝑖
(𝑙)

 represents the entire sum 

weighed of all inputs, comprising the biased factor, to unit 𝑖 within layer 𝑙. The ANN produces 
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a real number, denoted as the hypotheses 𝐻𝑤,𝑏(𝑥), provided the set value of its variables (𝑤, 𝑏). 

Particularly, the estimation that this ANN shows is provided in equation (5.7) [85]: 

                              𝑎1
(2) = 𝑓(𝑤11

(1)𝑥1 +𝑤12
(1)𝑥2 + 𝑤13

(1)𝑥3 + 𝑤14
(1)𝑥4 + 𝑏1

(1)) 

                              𝑎2
(2) = 𝑓(𝑤21

(1)𝑥1 +𝑤22
(1)𝑥2 + 𝑤23

(1)𝑥3 + 𝑤24
(1)𝑥4 + 𝑏2

(1))             

                            𝑎3
(2) = 𝑓(𝑤31

(1)𝑥1 +𝑤32
(1)𝑥2 + 𝑤33

(1)𝑥3 + 𝑤34
(1)𝑥4 + 𝑏3

(1))                         (5.7) 

                    𝑎4
(2) = 𝑓(𝑤41

(1)𝑥1 +𝑤42
(1)𝑥2 + 𝑤43

(1)𝑥3 + 𝑤44
(1)𝑥4 + 𝑏4

(1)) 

               𝐻𝑤,𝑏(𝑥) = 𝑎1
(3) = 𝑓(𝑤11

(2)𝑎1
(2) + 𝑤12

(2)𝑎2
(2) + 𝑤13

(2)𝑎3
(2) + 𝑤14

(2)𝑎4
(2) + 𝑏1

(2)) 

We might use the activation function 𝑓(·) to be applied to vectors element-wise in an 

additional concise expression: 𝑓([𝑧1, 𝑧2, 𝑧3, 𝑧4]) = [𝑓(𝑧1), 𝑓(𝑧2), 𝑓(𝑧3), 𝑓(𝑧4)]. Thus, equation 

(6.7) can be rewritten in the following way in equation (5.8) [85]: 

𝑎(1) = 𝑥 

𝑧(2) = 𝑤(1)𝑎(1) + 𝑏(1) 

𝑎(2) = 𝑓(𝑧(2)) 

                                               𝑧(3) = 𝑤(2)𝑎(2) + 𝑏(2)                                                  (5.8) 

𝑎(3) = 𝑓(𝑧(3)) 

𝑧(4) = 𝑤(3)𝑎(3) + 𝑏(3) 

𝐻𝑤,𝑏(𝑥) = 𝑎
(4) = 𝑓(𝑧(4)) 
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The vector of the input layer values is 𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4]
𝑇 . Forward propagation is the 

term used for the computing procedure that goes from input to output. Furthermore, we might 

determine the activation value 𝑎(𝑙+1) of the following layer 𝑙 +  1 as follows using the 

activation 𝑎(𝑙) for each layer, 𝑙 is shown in equation (5.9) [85]: 

𝑧(𝑙+1) = 𝑤(𝑙)𝑎(𝑙) + 𝑏(𝑙) 

𝑎(𝑙+1) = 𝑓(𝑧(𝑙+1)) 

We shall select 𝑓(·) to represent the sigmoid function 𝑓: ℝ → ] − 1,+1[ in this thesis as 

shown in equation (5.10) [85]: 

𝑓(𝑧) =
1

1 + exp (−𝑧)
                                                (5.10) 

The derivative of equation (6.10) is given below in equation (5.11) [85]: 

𝑓′(𝑧) = 𝑓(𝑧)(1 − 𝑓(𝑧))                                           (5.11) 

Utilizing matrix-vector computations allows us to significantly increase computation 

speed, which is one benefit of organizing every parameter and variable within matrices. 

 

Fig. 5.1: An example of ANN used in this simulation. 

(5.9) 
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5.3.2. State and Action Spaces 

We must first establish the state spaces 𝑆 and action spaces 𝐴, because RL methods might 

be represented as an MDP. The goal of 𝑄-learning is to acquire an ability to map the input of 

the state to the output of action. With a navigation challenge, the robot uses its sensors to sense 

its surroundings and reasoning abilities to decide what to do in each state depending on the 

present state in the environment [112]. There are eight distinct robot actions that constitute the 

action space 𝐴. Seven of these are fundamental movement actions: go forward (F), make a left 

turn at 300 (L30), a left turn at 450 (L45), a left turn at 600 (L60), a right turn at 300 (R30), a 

right turn at 450 (R45), a right turn at 600 (R60), and take emergency steps in order to go 

backward (B). The orientation of the robot's trajectory determines the eight actions. Since an 

actual vehicle is greatly endangered by a sudden turn, a turn at 900 is not specified. Reversing 

direction is considered an emergency maneuver that is only carried out when a robot has no 

alternate route to follow and is unable to turn around to prevent obstacles. As a sort of "instinct" 

action for MRs, this activity has not been taken seriously in the autonomous learning processes. 

In summary, the action space will be abbreviated in equation (5.12): 

𝐴 = {𝐹, 𝐿30, 𝐿45, 𝐿60, 𝑅30, 𝑅45, 𝑅60, 𝐵}                                    (5.12) 

A substantial but limited number of states make up the state space 𝑆 =  {𝑆1, 𝑆2, . . . , 𝑆𝑁}, 

and every state 𝑆𝑡 is specified using the 11-dimension representation of states. We consider 9 

sensors in the MR system. Thus, the multidimensional computational complexities are 

represented by 𝐷𝑡  =  [𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5, 𝑑6, 𝑑7, 𝑑8, 𝑑9, ]
𝑇 ∈ ℝ9×1. A robot's job is to determine 

if a barrier detected by a sensor is a wall that might not be avoided or a substance that might be 

avoided. Therefore, on each of the nine sensors within 𝐷𝑡, we add a vector 𝑈𝑡 ∈ ℝ
9×1 that 

indicates whether an object obstacle (𝑈 = 0) or an immovable barrier or wall (𝑈 = 1) is 
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identified. As a result, a state is represented using equation (5.13) [85] and might be 

characterized by four sets of attributes. The target region is 𝑉𝑡  ∈ {1,2, … ,9} and the indicator 

is 𝐼𝑡  ∈ {0,1} that estimates if the MR has recognized the goal. 

𝑆𝑡  = [

𝐷𝑡
𝑉𝑡
𝐼𝑡
𝑈𝑡

] ∈ ℝ16×1                                                (5.13) 

5.3.3. Reward Function 

The instantaneous feedback for an activity performed in a specific state is measured by 

the reward function. It assesses how well or poorly the action was carried out. Prior to providing 

the reward function, every environmental state is divided into four properties, referred to by the 

term the state property 𝑝𝑡 as shown in equation (5.14) [85], at every point in time. 

 𝑝𝑡 =

{
 
 

 
 
𝑆𝑆,                                   𝑑𝑏𝑜𝑢 ≤ 𝑑𝑟−0
𝐶𝑆,                  𝑑𝑐𝑜𝑧𝑦 ≤ 𝑑𝑟−0  ≤ 𝑑𝑏𝑜𝑢
𝐷𝑆,                  𝑑𝑐𝑜𝑙 ≤ 𝑑𝑟−0  ≤ 𝑑𝑐𝑜𝑧𝑦 

𝑊𝑆,                                   𝑑𝑟−𝑡 ≤ 𝑑𝑤𝑖𝑛
𝐹𝑆,                                    𝑑𝑟−0  ≤ 𝑑𝑐𝑜𝑙

                                      (5.14) 

Where, 

• SS (Safe State), is a state in which no detectable outside obstacles are present. 

• CS (Cozy State), is a condition when the robot's chances of colliding against 

nearby barriers are minimal or nonexistent. 

• DS (Dangerous State), is a condition where there is a significant possibility that a 

robot might crash into certain environmental barriers. 

• WS (Winning State), is a final stage in which the robot arrives at its objective. 

• FS (Failure State), is a terminating condition in which the robot crashes into 

obstacles. 
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The robot's distances to obstacles and its target are defined by 𝑑𝑟−0 and 𝑑𝑟−𝑡. The border 

width (sensor sensing range) between SS and any other states is specified by 𝑑𝑏𝑜𝑢. The width 

of the area of collision surrounding the obstacle is defined by 𝑑𝑐𝑜𝑙. The length of the winning 

zone surrounding the goal is defined by 𝑑𝑤𝑖𝑛. The comfy length is defined by 𝑑𝑐𝑜𝑧𝑦. Table 5.1 

defines the reward function 𝑟(𝑡) by considering the state characteristics. The minimal distances 

among the MR and nearby obstacles at time 𝑡 − 1 and time 𝑡 are 𝑑𝑚𝑖𝑛
𝑡−1  and 𝑑𝑚𝑖𝑛

𝑡 , respectively. 

The warning distance, or 𝑑𝑤𝑎𝑟𝑛, indicates when a robot is getting extremely close to a certain 

obstacle. 

TABLE 5.1: REWARD FUNCTION [85] 

State Transition Extra Criteria 𝒓 

Winning State ← Other State  1 

Cozy State ← Safe State  0 

Safe State ← Cozy State  0 

Cozy State ← Dangerous State  0.5 

Dangerous State ← Cozy State  0 

Failure State ← Dangerous State  -1 

Dangerous State ← Dangerous State 

(approaching obstacles) 

𝑑𝑤𝑎𝑟𝑛 ≤ 𝑑𝑚𝑖𝑛
𝑡 ≤ 𝑑𝑚𝑖𝑛

𝑡−1 − 2 -0.2 

𝑑𝑚𝑖𝑛
𝑡 = 𝑑𝑚𝑖𝑛

𝑡−1 − 1 ≤ 𝑑𝑤𝑎𝑟𝑛 -0.2 

𝑑𝑚𝑖𝑛
𝑡 = 𝑑𝑚𝑖𝑛

𝑡−1 − 2 ≤ 𝑑𝑤𝑎𝑟𝑛 -0.5 

𝑑𝑚𝑖𝑛
𝑡 ≤ 𝑑𝑚𝑖𝑛

𝑡−1 − 3 -1 

   

Unsafe State ← Unsafe state 

(evading obstacles) 

𝑑𝑤𝑎𝑟𝑛 ≤ 𝑑𝑚𝑖𝑛
𝑡  0.6 

𝑑𝑤𝑎𝑟𝑛 ≤ 𝑑𝑚𝑖𝑛
𝑡−1  0.4 
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5.3.4. Policy for the Stochastic Control 

As opposed to receiving explicit instruction, an RL agent chooses its actions based on 

both recent and prior decisions, as well as the outcomes of previous acts. We might use the 

MC techniques, for instance, to determine the state values when we have access to every state 

action (𝑠, 𝑎) in an adequate number of instances. Nonetheless, this approach is unrealistic, and, 

worse still, it is unlikely to visit several state-action pairings again. Handling the trade-off 

between exploration and extraction is crucial. In our approach, a probabilistic control policy 

can be expressed by transferring a Boltzmann distribution. Depending on its 𝑄-values, a 

learning agent attempts different behaviors within a probabilistic way. A specific state, denoted 

by 𝑠, yields an action, 𝑎, having probability shown in equation (5.15) [85]: 

𝜋(𝑠, 𝑎) = 𝑃(𝑎|𝑠) =
𝑒
𝑄(𝑠,𝑎)
𝑇

∑ 𝑒
𝑄(𝑠,𝑏)
𝑇𝑏∈𝐴

                                                (5.15) 

whereby the choice of action uncertainty is controlled by a temperature, 𝑇. When 𝑇 is 

extreme the agent selects an unanticipated action since the entire action 𝑄-values appear to be 

identical. When 𝑇 is inadequate the actions have different 𝑄-values, and choosing actions 

containing the greatest 𝑄-value is preferable. Since stochastic exploring requires too long to 

concentrate on the optimal actions during the complete self-learning procedure, we avoid 

setting the temperature as fixed. 

Since every 𝑄(𝑠, 𝑎) is initially produced incorrectly, a large 𝑇 is chosen to ensure that 

every action has an approximately equal probability of getting chosen. A great deal of 

unplanned investigation has been done over time, and the agent might ultimately take advantage 

of the information it has been gathering. As a result, the agent reduces 𝑇 and increases the 

likelihood of selecting actions based on greater 𝑄-values. Ultimately, 𝑇 gets closer to 0 (purely 



 R. Raj        ”Intelligent Control System for Mobile Robot” 

 

94 
 

exploited) as we suppose 𝑄 is convergent to 𝑄∗, and we usually choose an action using the 

greatest 𝑄-value  as shown in equation (5.16) [85]: 

𝑃(𝑎|𝑠) = {
1,              𝑖𝑓 𝑄(𝑠, 𝑎) = 𝑚𝑎𝑥𝑏∈𝐴𝑄(𝑠, 𝑏)
0,               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                               

                           (5.16) 

To summarize, the agent begins with a substantial amount of exploration and gradually 

shifts to exploitation, until eventually, we are only investigating (𝑠, 𝑎) which have performed 

less efficiently in the past. 

5.3.5. Iteration of State-Action Value 

The mapping policy between the observed environmental condition and the action that 

will be executed is expressed by the Q-value function. A single action for a given state and a 

single 𝑄-value 𝑄(𝑠𝑡, 𝑎𝑡) relate to each other. Our major areas of interest for research include 

autonomous navigation challenges. They feature extensive state and action spaces, similar to 

various real-world robot applications. Typically, a 𝑄-table contains every one of its state or 

action values. For large-scale issues, however, it becomes operationally costly and impractical. 

In our technique, we recommend applying a three-layer ANN to forecast every state's 𝑄-values. 

The state aspects that MR observes in its surroundings serve as its inputs, and each of its action's 

Q-values are its results. 

There are 16 neurons within the input layers and 5 within the output layers of the neural 

network. Additionally, the hidden layers have eight neurons. Using the weights from the neural 

network as a guide, the iteration of action values is accomplished. The goal value in neural 

network training for Q-learning is the optimum one at the end of every value iteration phase. 

The network's weights do not operate linearly in Q-values of action. The NN weights are 

updated to achieve the iteration of the action value. 
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Using the weights of the NN as a guide, iteration of the action value is accomplished. The 

activations in the output and hidden layers are computed using the sigmoid function. The 𝑄-

value of adopting at for 𝑠𝑡 is specified using 𝑄(𝑠𝑡, 𝑎𝑡), which we represent as a vector 

representing every action value for the state 𝑠𝑡. Therefore equation (5.17) [85]: 

𝑄(𝑠𝑡) =

[
 
 
 
 
𝑄(𝑠𝑡, 𝑎1)

𝑄(𝑠𝑡, 𝑎2)

𝑄(𝑠𝑡, 𝑎3)

𝑄(𝑠𝑡, 𝑎4)

𝑄(𝑠𝑡, 𝑎5)]
 
 
 
 

                                                          (5.17) 

The NN is used for supervised learning, with specific label provision during every training 

state-action combination. On the other hand, NN utilized for RL lacks label outputs. The goal 

value for NN training in Q-learning comprises the optimum one at the end of every value 

iteration phase. This update rule is abbreviated in equation (5.18) [85]: 

𝑄𝑘+1(𝑠𝑡, 𝑎𝑡) ≔  𝑄𝑘+1(𝑠𝑡, 𝑎𝑡) + 𝛽ma
𝑎∈𝐴

𝑥 [𝑟𝑡 + 𝛿 𝑄𝑘(𝑠𝑡+1, 𝑎) − 𝑄𝑘(𝑠𝑡, 𝑎𝑡)]                   (5.18) 

where state-action combinations are created at random between 0 and 1, and the starting 

𝑄0 action values for all. For the (𝑘 + 1)𝑡ℎ iteration, 𝑄𝑘+1(𝑠𝑡, 𝑎𝑡) is regarded as the goal value 

of the real value 𝑄𝑘(𝑠𝑡, 𝑎𝑡). 

5.3.6. Algorithms 

A scenario with an agent that explores all unfamiliar surroundings makes up the Q-

learning algorithms. Finding the best action-selection strategy in every MDP constitutes the aim 

of Q-learning. A policy is an agent's set of behaviors that maximizes the overall anticipated 

reward for the current condition. Using NNQL, an independent navigation problem might be 

split into two steps. The initial step is the training phase, which gives the robot the power to 
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acquire knowledge on its own, and the subsequent one includes the navigating procedure, which 

utilizes the learned policy to carry out an autonomous navigational mission [113]. 

5.3.6.1. NNQL Training Procedure 

The MR is trained by subjecting it to several learning sessions, all of which have a unique 

setting. The robot has predetermined start locations as well. The diversity enables the robot to 

experience a wider range of scenarios, perhaps quickening its pace of learning. Every episode 

begins with an assessment of the surrounding conditions. With the use of its sensors, the robot 

locates nearby obstacles, and it is given an approximate objective zone. After verifying whether 

its present state is sufficiently secure, the robot performs a focused-on-target activity in which 

it shifts its orientation in the direction of the target location and advances a single step in an 

attempt to reach nearer. In the event that its present state is not secure, the robot transmits the 

characteristics of the present state via the FFNN and generates every conceivable Q-value. The 

robot selects an action and adjusts states in accordance with the action-selecting tactics, which 

is illustrated using a probabilistic control policy. After that, the robot verifies the newly created 

state, gets the reward right away, and modifies the Q-values appropriately. The NN uses the 

backpropagation technique to modify the network's weights after receiving the revised 𝑄-

values. 

There are a set number of movement steps for every episode. The robot must complete 

the stages in order to arrive at its goal. An episode ends and a fresh one begins whenever a robot 

runs over the steps and misses the objective, or if it encounters an obstacle and still manages to 

obtain the goal. The utilization of the collected pattern of state-action pairings and related 𝑄-

values is crucial for training effectiveness. Updating a single 𝑄-value during a moment is 

possible with single-step 𝑄-learning [114], [115]. The prior values of actions are deleted but 

only the present 𝑄-value is revised whenever the robot reaches its new state. Others employed 
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batch learning, which, after each of the 𝑄-values is gathered, modifies every 𝑄-value [116]. 

There are certain benefits to this as well. We are unable to verify that the obtained 𝑄-values 

represent the optimum goal values in the absence of an online update. Furthermore, awaiting 

all values to be acquired is a waste of time. In addition to updating the Q-values operation, we 

recommend gathering earlier values for combined training. Algorithm 5.4 provides the training 

algorithm. 

ALGORITHM 5.4: NNQL TRAINING ALGORITHM 

Algorithm 5.4: NNQL Training Algorithm 

1: Randomly start the NN weights 𝑊(1)𝑎𝑛𝑑 𝑊(2); 

2: For every episode do 

3:         Set the goal position and create obstacles randomly; 

4:         Set the initial position and orientation of MR at [𝑥0, 𝑦0] and 𝛳0; 

5:         Observe the present state and property of the state as 𝑠1 and 𝑝1 respectively; 

6:         Input ≔ [], goal≔ []; 
7:         𝑡 ← 1; 

8:         For every movement step do 

9:                Estimate every action value {𝑄(𝑠𝑡, 𝑎𝑖)}𝑖 for state 𝑠𝑡 using NN; 

10: Choose only one action 𝑎𝑡 based on the probabilistic policy 𝜋(𝑠, 𝑎) as stated in 

(6.15) and then proceed; 

11:                Observe the novel state and property of the state as 𝑠𝑡+1 and 𝑝𝑡+1 respectively; 

12:                Acquire the instant reward (𝑟𝑡); 
13:                Change the 𝑄-value functions using (6.18) through 𝑄(𝑠𝑡, 𝑎𝑡) to �́�(𝑠𝑡, 𝑎𝑡); 
14:                Scale the �́� characteristic to the interval [0, 1]; 
15:                Insert 𝑠𝑡 in the input and �́�(𝑠𝑡, 𝑎) in the goal; 

16:                Utilize SGD for updating both weights 𝑊(1)𝑎𝑛𝑑 𝑊(2), and to train (input, goal); 

17:                If 𝑠𝑡+1 represents a winning state or a failing state then 

18:                    Initialize a fresh episode; 

19:                End if 

20:                𝑡 ← 𝑡 + 1; 

21:        End  for 

22:  End for 

 

5.3.6.2. NNQL-based Robot Navigation 

The robot uses its trained strategy, which is still probabilistic but almost predictable, to 

navigate through different scenarios in the future. The robot first determines its present 
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state before beginning its journey around its surroundings. In a secure state, the MR just needs 

to shift its position in the direction of the goal and take a single step forward, bypassing the 

requirement to adhere to the policy. The robot keeps going as long as it reaches a non-safe area, 

at which point it must implement its trained control policy. The robot generates every 

conceivable state-action Q-value using the FFNN. The action with the highest Q-value is taken 

by the MR in a greedy manner. The robot then determines its latest state and continues the 

action-choice procedure until it either crosses an obstacle or achieves its goal. Algorithm 5.5 

illustrates the navigation algorithm. 

ALGORITHM 5.5: NNQL-BASED ROBOT NAVIGATION ALGORITHM 

Algorithm 5.5: NNQL-Based Robot Navigation Algorithm 

1: Enter the pre-trained NN weights 𝑊(1)𝑎𝑛𝑑 𝑊(2); 

2: Provide the goal and randomly generate obstacles; 

3: Set the initial position and orientation of MR at [𝑥0, 𝑦0] and 𝛳0; 

4: 𝑡 ← 1; 

5: For every mobile step do 

6:        Observe the present state and property of the state as 𝑠𝑡 and 𝑝𝑡 respectively; 

7:        If 𝑠𝑡 represents a winning state or a failing state then 

8:             Stop the navigation; 

9:        End if 

10:        Estimate every action value {𝑄(𝑠𝑡, 𝑎𝑖)}𝑖 for state 𝑠𝑡 using NN; 

11:        Choose only one action 𝑎𝑡 based on greedy policy and then proceed; 

12: End for 

 

5.4. Experimental and Simulation Analysis 

The targeted navigation problem for this simulation is described as follows: Everything 

that is required to effectively navigate a previously unknown environment with widely spread 

terrain, including long halls and blind edges, is an MR that contains dispersed local range 

sensors. With investigation, the MR will generate an autonomous environmental system since 

at first it has little knowledge of its surroundings. The complexities of environments with 

volatile obstacles are greatly increased by their dynamic and unexpected character. We 
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implemented action a local plan that utilizes RL that translates visible perceptions into actions 

for secure exploration and obstacle avoidance in dynamic, unfamiliar environments. To enhance 

the fundamental RL techniques and enable mobility within complex scenarios, we use many 

common patterns. We utilize the MR model that is explained in Chapter 4.5 to perform 

autonomous navigation within unfamiliar environments. 

The size of the environment map is 250 × 250𝑚2 for the simulation. The obstacles are 

dispersed arbitrarily around the surroundings, and the robot is not aware of their quantities, 

dimensions, or locations beforehand. On the terrain map, the MR's beginning location position 

(10, 10) is displayed as a red-colored triangle, while its target position (240, 240) is displayed 

as a green-colored circle. The MR job is to commence at the beginning location and select the 

optimal path to travel in order to get to the destination avoiding striking into any obstacles and 

return back from the goal position to the starting point avoiding striking into any obstacles. The 

complete set of hyperparameters and their corresponding descriptions that are utilized in the 

present research are shown in Table 5.2. 

TABLE 5.2: LIST OF HYPERPARAMETERS 

Configuration of System Description/Version 

Version of Python 2.9.1 

Version of MatLab 2023a 

Version of Keras 2.15.0 

Version of NumPy 1.24.3 

Version of TensorFlow 2.9.1 

Version of Matplotlib 3.7.0 

RAM 8GB 

Processor Intel(R) core (TM) i3-4005U 

 

Given a partial awareness of the environment and a target destination or group of 

destinations, intelligent navigation refers to the robot's ability to arrive at decisions according 
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to cognitive abilities and information collected from sensors with the purpose of reaching its 

target destinations as rapidly and efficiently as possible. A simulated MR that performs the 

selected behaviors in the environment of simulation at each episode's phase. The NN learning 

procedure can also be extended to a database of available examples for training, which allows 

the gathering of workable solutions for similar scenarios that have not been previously seen in 

experiments. Four totally different navigation operations utilizing similar weights were 

displayed in Fig. 5.2. 

 

Fig. 5.2: An illustration of NNQL-based autonomous navigation outcomes across various 

environments. 
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From one starting point to a specific goal location, the robot attempted to attain with 

different path in Fig. 5.2. In each of the four scenarios, the robot managed to reach the desired 

location without running into any obstacles and maintained a secure distance from them. 

Because the robot did not have a thorough understanding of the environment's map, it is noticed 

that the pathways it selected may not have been the best ones, but even in such complex 

surroundings, they are perfectly acceptable and fulfill our expectations. The blue-colored paths 

are considered as less optimal paths w. r. t. green-colored path because the green-colored path 

is the shortest and consumes less energy thus it is the optimal path when compared with blue-

colored paths. Simulation experiments are carried out in order to evaluate the suggested 

strategy. The robot is dispatched to complete a mission that involves navigating a new and 

strange area. The main objective of the simulation aims to generate an optimal Q-value. Table 

5.3 shows the list of Q-learning parameters and their values used for the experimental analysis. 

TABLE 5.3: Q-LEARNING PARAMETERS 

List of Parameters Values 

Gamma 0.99 

Epsilon 1.0 

Epsilon decay 0.995 

Epsilon min 0.01 

Learning rate 0.001 

 

 Unlike the trials, the robot does not immediately know how many, how big, or where the 

obstacles are. It also becomes apparent that, despite the fact that the robot was not completely 

acquainted with its surroundings, the paths it chose might not have proven to be the most 

favorable, but they were nonetheless entirely suitable and satisfied standards references. The 

algorithm used to navigate MR using NNQL is given in Algorithm 5.5. 
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The robot is able to embark on new challenges and avoid being stuck in an endless cycle 

once it becomes used to its surroundings, thanks to learning in a variety of contexts. As we 

observed, the robot experimented with a variety of activities, and the rewards assessed its choice 

of action. This information will enable the robot to make better decisions about actions going 

forward. Once the learning phase is over, the weights will be proficient and ready to go straight 

into the robot navigation procedure. Given that the proposed approach uses trial and error, it 

makes sense that many episodes will not succeed as a result of a collision. An episode where 

the robot successfully reaches the goal location is considered an effective learning episode. Fig. 

5.3 displays the number of effective learning episodes for each 50 episodes. Less than 50 of the 

robots in the initial 100 episodes achieved their goals, but more than 70 of the final 50 episodes 

showed the robot reaching its destination. This rapidly growing trend proved that the robot's 

intelligence was enhanced by the suggested NNQL algorithm. 

 

Fig. 5.3: An illustration of successful learning episodes during simulation 
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This information will enable the robot to make better decisions about actions going 

forward. In other words, the robot has progressively picked up skills to deal with its 

surroundings. The robot has picked up guidelines for how to act around obstacles. The robot 

basically just adopts the FFNN and selects the optimal course of action to select the optimal 

path to reach the desired goal location. Sometimes robots choose different paths to reach the 

target location. Since these aren't among the most efficient paths, we're looking at how they 

vary from each other. Then we select the shortest path. The proposed system creates a state 

collection with flexible variables whereby, after navigating a particular scenario properly, it can 

be useful in another one, regardless of the location where each obstacle and objective is located. 

Defining the reward function, or how the environment responds to the activities of the 

behavioral agent, constitutes additional criteria for decision-making. The simulation employs 

the epsilon-greedy algorithm to analyze autonomous navigation behavior. The simulation-time 

reward and epsilon variation curves are shown in Fig. 5.4. 

 

Fig. 5.4: Reward and Epsilon variance scores for each episode in the simulation. 
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5.5. Discussion 

According to the above trial findings, NNQL has shown itself to be capable of performing 

autonomous navigation activities well and consistently despite the need for explicit robot 

behavior programming. The robot is capable of autonomous navigation with nearly 100% 

accuracy after just 500 episodes. Two well-known model-free algorithms were compared, and 

NNQL appeared better. It is reasonable to conclude that NNQL has effectively equipped an 

MR using robust self-learning capabilities for duties involving autonomous navigation. One 

drawback of probabilistic strategies is that the robot might not always pick the best course, and 

it can go lost for a time before discovering a route out. The robot needs to explore its 

surroundings for the purpose of learning a limited portion of its surroundings because it lacks a 

comprehensive perspective of it. Using simultaneous localization and mapping (SLAM) 

methods represents a possible remedy. An extensive portion of traditional robotics concentrated 

on sensor interpreting, thinking, and optimum control provided representations regarding the 

robot and surroundings. Although this method works well for a lot of commercial uses, it is not 

as ambitious as using robots as a testing ground for AI. 

The robot self-learning technique under specific input was introduced within this chapter 

for those lacking any prior expertise. We investigated the challenge of MR navigation through 

the integration of NNs and RL. Q-learning is used to improve an MR's capacity for self-learning 

using trial-and-error encounters via a new environment. In order to preserve and educate 

substantial Q-values and to extend the acquired effectiveness to substantial state and action 

spaces, we created unique reward expressions and implemented NN architecture. The findings 

from the experiment demonstrate the reliability and effectiveness of the presented approach. By 

securely completing navigation objectives in an unpredictable and unpredictable setting, the 

robot develops into a highly intelligent system capable of powerful self-learning and adaptation. 
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Chapter 6 

A Comparative Discussion: Reinforcement 

Learning Vs Particle Swarm Optimization and 

Reinforcement Learning Vs Thermal Navigation 

 

6.1. Introduction 

Only a few extremely stochastic prospective, and dynamic environments have been found 

that make traditional strategies for sophisticated system formation unsuitable [117]. These 

innovative requirements are not sufficiently addressed by the technology and approaches that 

are currently in use. Therefore, by giving autonomous devices the ability to adapt and make 

decisions as well as acquire knowledge, we can provide these systems with the knowledge and 

skills including RL-based navigation technique, which is necessary to identify and resolve these 

kinds of problems. Because of the frequently huge range of variables and crowded indicators 

of performance, designing efficient robotic systems is a classic instance of costly optimization 

in times of uncertainty. A control technique, as used for the framework of MRs, is a method or 

mechanism that interprets sensor input and produces actuator instructions to direct the motion 

of the robot along an intended action or objective. The key component within the MR that 

belongs to the control mechanism is the control techniques including RL, Particle Swarm 

Optimization (PSO), which enables more precise and efficient navigation. The control module 

continually modifies the actuator orders to preserve an intended trajectory or complete a 

specified job based on input given by the MR sensor. The problem of determining how much 

torque and force the robot's controllers must produce in order to allow MR to proceed in the 
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right direction, maintain the desired path, and, typically, finish an activity with the appropriate 

performance criteria is addressed by MR control techniques [118]. 

It cannot be an easy process to create high-performing robotic processors by hand for 

various reasons. First important all, even the most basic contemporary robots contain a lot of 

actuators and sensors, which indicates that there are a lot of control factors to be optimized. 

Furthermore, the presence of discontinuity and irregularities within real-world systems can 

make it challenging to use widely recognized linear control strategies. Controlling challenges 

in MRs (dynamic and static) is more difficult than usual because of inertial factors, linked 

reaction behaviors, and gravitational influences. The control module continually modifies the 

actuator orders to preserve an intended trajectory or complete a specified job based on input 

given by the MR sensor. The use and intended functionality of the MR will determine the exact 

kind of control technique that is employed. In an MR, a navigational or control technique's main 

objective is to provide the robots the ability to move around and carry out tasks on their own in 

unpredictable and complex environments. 

Mobile robots are capable of using a variety of control techniques, including thermal, 

PSO, and RL controller-based navigation approaches. In this chapter, we are going to study a 

comparative analysis between various navigational approaches including, RL, PSO, and 

thermal or infrared assistive navigation. RL approach has been already discussed and analyzed 

in previous chapters. Thus we are going to discuss more details about PSO and thermal assistive 

navigation approach before starting a comparative study in this chapter. 

6.2. Particle Swarm Optimization 

When designing online controllers, a variety of evaluating methods can be used. When 

designing online controllers, a variety of evaluating methods can be used. For online controller 

structure, a variety of evaluating methods are available. PSO is an approach applied for the 
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optimization of non-linear continuous functions. PSO can find ideal or near-optimum 

techniques and is easy to utilize [119]. The information transmission between every particle in 

the swarm is a particularly important component of the PSO approach. Each of the particles 

will be examined with the goal of finding the optimal answer within its searching region. The 

searching process is guided by both collective and individual data across the entire swarm of 

particles. One particular kind of iterative algorithm is known as the PSO approach. In every 

subsequent iteration, every particle attempts to get closer to the optimal result. At the conclusion 

of every iteration, an observation addressing the swarm's best selection from the previous 

possibilities is made. In order to find the shortest route between every point of a predetermined 

environment that is accessible within the observation region, the PSO provides an effective 

approach for planning the path. 

By PSO, every particle finds a response for the issue by integrating its specific past 

searches together with the experiences of the other particles. After going through several 

iterations, one might finally determine whether the technique is optimum or inadequate for a 

given problem [120]. For initial PSO, particles inside the resulting zone are first generated 

randomly. Equations (6.1) and (6.2) represent how the locations and velocities developed under 

the PSO approach [121]. 

𝑣𝑖
𝑑  = 𝑣𝑖

𝑑  + c1 𝑟1
𝑑( 𝑝𝑏𝑒𝑠𝑡𝑖

𝑑 − 𝑦𝑖
𝑑) + c2 𝑟2

𝑑(𝑔𝑏𝑒𝑠𝑡𝑑 − 𝑦𝑖
𝑑)                    (6.1) 

 𝑦𝑖
𝑑  = 𝑦𝑖

𝑑  +  𝑣𝑖
𝑑

                                                                                                    (6.2) 

Where the velocity of ith particle is given by 𝑉𝑖 = (𝑣𝑖
1, 𝑣𝑖

2, 𝑣𝑖
3, 𝑣𝑖

4, …… , 𝑣𝑖
𝐷), the position 

of 𝑖th particle is given by 𝑌𝑖 = (𝑦𝑖
1, 𝑦𝑖

2, 𝑦𝑖
3, 𝑦𝑖

4, …… , 𝑦𝑖
𝐷), the acceleration coefficient is 𝑐1 and 

𝑐2, two values, 𝑟1
𝑑 and 𝑟2

𝑑, were chosen arbitrarily from the interval [0, 1], the place which is 

greatest recognized by the swarm is 𝑔𝑏𝑒𝑠𝑡 = (𝑔𝑏𝑒𝑠𝑡1, 𝑔𝑏𝑒𝑠𝑡2, …… , 𝑔𝑏𝑒𝑠𝑡𝑑), a personal best 
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place recognized by 𝑖th particle is 𝑝𝑏𝑒𝑠𝑡𝑖 = (𝑝𝑏𝑒𝑠𝑡𝑖
1, 𝑝𝑏𝑒𝑠𝑡𝑖

2, 𝑝𝑏𝑒𝑠𝑡𝑖
3, 𝑝𝑏𝑒𝑠𝑡𝑖

4, …… , 𝑝𝑏𝑒𝑠𝑡𝑖
𝐷), 

D is the dimension of the problem associated with optimization, and 𝑑 ∈ {1, 2, …… ,𝐷}. 

6.3. Thermal Navigation 

There are many methods for providing safe and efficient autonomous navigation for 

mobile robots in an unknown environment. The thermal navigation approach is one of the most 

important strategies for autonomous navigation of MRs that utilizes an infrared sensor and GPS 

technique. The infrared (IR) sensor represents a specific type of discrete sensor that has been 

emphasized as a way to conduct landmark or item recognition in an unfamiliar environment. 

This sensor, which uses the technique of optical triangulation concept, provides superior 

resolution with a faster reaction time, high accuracy, extended range, and obstacle-avoiding 

capabilities [122]. The orientation and proximity of an MR with respect to a chosen component, 

including a building or roadway edge, might be ascertained using the thermal navigation 

system. When compared to the precision provided by widely used terrestrial satellite systems, 

this technique allows for a substantial improvement in the reliability of establishing an MR 

location. Instead of generating more signals, the system takes advantage of the thermal energy 

that has been collected in the surrounding area [123]. A basic infrared matrix, a computer for 

processing data, and an electronic armband are the core components of the thermal navigation 

system. In this approach, the utilization of renewable energy for information collection and 

computation allows the mobile navigation system to function throughout extended periods of 

duration despite the needed charging of the batteries. The system's primary job is to determine 

if the vehicle has crossed across to wrong edge of the roadway or has entered the space between 

the traffic lanes. 

This sensor's length measuring capability has the benefit of allowing it to calculate the 

length from the object's observed terrain, which is helpful for 3D extrapolation that mimics the 
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object's appearance. We can identify an adequate path for a robot to navigate, for instance, 

relative to building walls or road edges, through the use of matrix infrared sensors mounted on 

the exterior surface of an MR model. Finding out if the MR is headed closer or farther from the 

object of choice requires evaluating the image captured by the infrared sensor. Precise location 

determination, such as when a robot is down a route or a route, is made possible by the 

integration of GPS navigation with infrared sensors. 

A thermal navigation system explains in further detail the way a thermal camera might 

signal a robot to the approaching end of a structure when it detects an edge within its walls 

[124]. The building's floor and walls are composed of two distinct materials with various colors 

and patterns. Because every material possesses unique transparency, the thermographic picture 

might show the varying temperatures of the floor and the exterior wall. The approach using the 

thermographic cameras measures the length 𝐿 within an MR and an interior wall can be 

abbreviated as equation (6.3) [124], [125]. 

                                               𝐿 =
ℎ(

1
𝑡𝑔(𝜃1 + 𝜃2)

+ 𝑥)

1 +
𝑥

𝑡𝑔(90 − 𝜃1)

                                                              (6.3) 

Where the sensor height is ℎ, the thermographic camera reading is 𝑥, the field of view 

(FOV) angle for the infrared sensor is 𝜃2, and the degree of inclination of the sensors relative 

to the floor is 𝜃1. 

 

Fig. 6.1: The infrared thermal line sensing techniques schematic diagram [126]. 
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One of the most important applications of the thermal navigation approach is in the 

autonomous driving assistance system. Fig. 6.1 displays an assembly architecture for the 

infrared thermal line tracking method. Advanced driver support system development, 

assessment, and deployment are presently in progress. The term Advanced Driver Assistance 

System (ADAS) refers to the grouping of security and driver support technologies. The 

automobile's bumper in the front has an infrared sensor that detects if the vehicle is getting 

closer to the border dividing the lanes of traffic or on the roadside. Having road monitoring is 

essential for autonomous vehicle operation. Despite this, the monitoring system has to deal with 

two primary limitations: limited processing capacity and real-time calculation. Detecting a road 

path or the border of the roadway and repositioning the automobile in case of an unexpected 

deviation from the intended track is one of its primary duties [127]. These days, this technology 

is often seen in automobiles; it works by analyzing images captured by cameras mounted on 

front bumpers or windshields. When lanes are well-defined on the roadway, this approach 

performs effectively. 

 

Fig. 6.2: The infrared sensor installation and the positioning of the automobile with relative to 

the road layer [126]. 
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The thermal navigation approach uses the thermal emission factor, which varies 

depending on the color and substance that an item is constructed. During this approach, the 

temperature for the portrayed white roadway segments, the internal temperature for the 

sidewalk, and the temperatures of the darkest or black roadway are all measured in the situation 

under assessment. These items vary in both color and substance composition due to their 

varying emission parameters. This image is captured using a thermographic camera on the left 

and a video camera on the right while an automobile is passing by roadway lines and road edges 

as shown in Fig.6.3. The heat produced by the vehicle's engine and radiated off the road surface 

is used by the infrared sensors to identify the location of the vehicle when compared to the road. 

 

Fig. 6.3: Illustration of the thermographic image on the left taken by the thermographic camera 

and the right side image taken by normal video camera [126]. 

The basic idea of the infrared thermal lines tracking system is to identify instances that 

involve the car drifting from its intended lane and notify the driver about the issue. Two 

thermographic cameras are used as heat sensors with this framework. The infrared sensor 

exploits the phenomena of variable emissivity and temperatures of the substances that make up 

the roadway pavement and the sidewalk to calculate the location of the automobile with respect 
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to the roadway. As seen in Fig. 6.2, this approach can figure out if the automobile is on the right 

route using the thermographic images if we understand the location of the thermal sensor with 

respect to the floor (tilt angle 𝛽, mounted heights for the sensor 𝐻), and the dimension of the 

roadway lanes (width 𝐴). The floor width 𝑎𝑛 for the hypothetical measurement point might be 

determined by applying equation (6.4) [123], which depends on the height 𝐻 and the degree of 

inclination 𝛽. 

                               𝑎𝑛 = 𝐻𝑐𝑜𝑠(𝛽)(𝑡𝑔 (
𝛼

𝑁
𝑛) − 𝑡𝑔 (

𝛼

𝑁
(𝑛 − 1)))                                         (6.4) 

Where, the sensor’s horizontal resolution is 𝑁, the number of the measurement point is 𝑛, 

and 𝛼 is the viewing of the FOV angle. 

Equation (6.5) [126] might be used to determine the length of the roadway 𝐴 in regard to 

height 𝐻 and angle of inclination 𝛽. 

                   𝐴 = 2 × ∑ (𝐻𝑐𝑜𝑠(𝛽)(𝑡𝑔 (
𝛼

𝑁
𝑛) − 𝑡𝑔 (

𝛼

𝑁
(𝑛 − 1))))                           (6.5)

𝑛=
𝑁
2

𝑛=1

 

The observed variance in temperature between the roadside and the road top layer is 

typically caused by variations in the emissivity for a particular surface or variations in the 

temperature of the air, which contribute to distinct surfaces becoming warmer or cooler at 

distinct times owing to various thermal resistances and capacitances. The phenomena of heat 

released by the automobile engine reflecting off the roadway's surface and the sidewalk across 

resulting in the automobile traveling based on thermal navigation can be employed in this 

approach to identify the border of the roadway. In automobiles, choices are frequently made 

based on various sources of data to allow the system to function perfectly and consistently. The 

automobile may thus respond without mistake if the information is known from many sources. 
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Alongside other techniques, the program makes use of the reversed perspective shift to turn the 

visual through an aerial perspective and the graph split classification approach. The thermal 

reflecting coefficient, which varies according to various materials and colors, determines how 

much heating radiates off the road surfaces. It is feasible to maintain the vehicle in the proper 

lane and alert the driver in the case of an intended unexpected directional shift or an unexpected 

effort to move the vehicle from the side of the roadway to the sideline since the navigation 

system can identify road lanes as well as road edges. The working algorithm of the infrared 

thermal line detecting method is displayed in Fig. 6.4. 

 

Fig. 6.4: The system's operational algorithm for detecting infrared thermal lines [126]. 

Another method that uses far fewer computing resources and is intended for tiny devices 

is to recognize a roadway path by detecting changes in the surface of the photo that is captured 
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by the camera [128]. The visual appearance and layout of the outer layer, at which the thermal 

energy produced by the engine of the automobile emanates, account for the perceived variance 

in temperature. The road and the pavement radiate the thermal radiation produced by the 

vehicle's engine. The infrared photographs show that additional heat is radiated from the road 

surfaces because it is better than the sidewalk. An example image of an automobile traversing 

a road lane might exist viewed in Fig. 6.5. The image captured from a thermographic camera 

on the left-hand side shows the thinner region separating the automobile's wheels. This is caused 

by heat from the engine of the automobile radiating off the white roadway lines. 

 

Fig. 6.5: An image captured by a thermographic camera (on the left side) and a video recording 

camera (on the right side) [126]. 

By using infrared sensors to identify heat emissions from individuals and objects, these 

devices provide vital perception of space using non-visual sensory methods including vibration 

or auditory signals. Using infrared sensor technology to develop a thermal guide for the blind 

is a creative way to improve the mobility and freedom of those with visual impairments. The 

infrared sensors are very useful to support visually impaired people by determining accurate 

distance from other objects to avoid collision because, a visually challenged individual finds it 
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challenging to navigate inside environments due to extreme precision demands, poor or 

nonexistent GPS signal within houses, and other factors. An extensive range of commercial 

solutions are available that aid blind individuals in navigating. Thermal navigation strategy is 

one of the famous approaches nowadays among researchers to develop the best assistive system 

to provide aid to blind or visually impaired people. While infrared sensors might be employed 

to establish a person's location on the roadway, the accuracy is rather low. These sensors make 

it possible to measure the gap between a visually impaired individual and different objects or 

architecture to provide aid in their movement [129]. 

The data gathered using infrared sensors is processed by a microcontroller. It uses the 

sensor information to interpret them in order to calculate the obstacles' location and orientation. 

The schematic layout of the navigation system is presented in Fig. 6.6. There are two primary 

segments in the framework. The modules communicate with each other over wireless lower 

energies, a power-efficient interface. The sensor segment, which is worn on the upper arm of 

the blind individual, collects data from their environment, and the notice section, which is worn 

on the blind person's hand, transmits details to people. 

 

Fig. 6.6: The thermal navigation system layout for those with vision difficulties [124]. 
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The separation between the blind person and a chosen item is computed using the thermal 

sensor data, which is sent to the sensor unit. A blind person can be placed in relation to an item, 

such as an obstacle, by measuring the variations in emissivity and temperature between both of 

them. Notifications are created according to the information that is gathered through the Sensor 

unit and then delivered to the Notice unit using the wireless Bluetooth connector. Vibration 

sensors are worn on a visually impaired individual's hand and provide the proper vibrating 

patterns that the notice unit translates from the received signals. As shown in Fig. 6.7, the 

employment of a narrow component, such as a tape composed of a substance possessing a large 

thermal reflection factor, mounted on an interior wall in a structure at a specific height ℎ above 

the floor is the approach suggested by [124]. Due to the tape's large thermal reflecting factor, 

any heat produced by an individual standing close to the building's surface can be reflected off 

of it and then measured using a thermal sensor that is attached to the person's wrist. 

 

Fig. 6.7: The technique for measuring the distance using the component with a large coefficient 

of reflections [124]. 
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We can determine the blind person's location relative to the wall by applying equation 

(6.6) [124]. 

                                        𝐷 =
𝑡𝑔 (𝜋 −

1
2𝛼 − 𝛽)𝐻𝑍 − 𝑍ℎ − ℎ

𝑡𝑔 (𝛽 −
1
2𝛼) + 𝑍

                                                  (6.6) 

Where the tilt angle is 𝛽 for the infrared sensor, the static angle for the FOV sensor is 𝛼, 

the height of the sensor from the floor is 𝐻, ℎ is the height of point with high reflectivity, and 

the quantity of pixels above and beneath the plane displayed in the thermographic picture, 

respectively, as determined by reading the value using the picture produced by a thermographic 

camera is 𝑍. This value is equal to the ratio of pixels 𝐶 to pixels 𝐵. 

Thus, infrared-based thermal navigation systems provide a promising technological 

advancement for enhancing the freedom and standard of living of those with visual 

impairments. With continued advancements, technology has the ability to transform into a 

navigational and safety essential. 

6.4. Comparative Discussion 

There may be an unanticipated decrease in efficiency when implementing a specified 

controller on actual robots for a variety of reasons, including manufacturing flaws, 

environmental changes, or inaccurate modeling. As we discussed above about the metaheuristic 

(PSO) approach and a modern technique such as thermal navigation for the navigation of robots 

in a complex environment scenario. These two techniques are also well known among robotics 

researchers for finding an optimal route within complex and unknown environments for the 

navigation of MR when they are compared with DL-based robot navigation. The thermal 

navigation approach and PSO technique are well known for obstacle avoidance tasks during the 
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implementation of MR. Now, we further discuss the comparative analysis based on major 

differences between these two techniques and RL based navigation approach. 

6.4.1. Reinforcement Learning Vs PSO  

In place of human-guided approach ML approaches such as RL offer a solution to the 

aforementioned problems. Specifically, evaluation techniques will automatically generate 

autonomous controls in enormous exploration spaces, handling discontinuity and irregularities. 

and discovering novel solutions that human creators might not have considered. Moreover, an 

entirely on-board implementation of the learning procedure allows for automatic adaptability 

to the surroundings and supporting electronics [130]. Although the primary disadvantage of 

utilizing an online, evaluating approach is the significant time investment required to describe 

the efficiency of potential controller implementations. Assessment of performance noises can 

originate from multiple sources of unpredictability, including production tolerances, sensor 

noise, and loose collaboration in multi-robot environments. Two categories of evaluation 

techniques that have previously been used in robotic controller development are the subject of 

this section: A population-centered metaheuristic called Particle Swarm Optimization with a 

technique and an RL approach called 𝑄-learning. 

PSO has been employed to execute adaptation procedures for a distributed method for 

multi-robot setups. This approach optimizes the evaluation procedure and decreases the needed 

analysis time, but it necessitates the examination of several different options. However, 𝑄-

learning has the ability to iteratively improve one policy in particular, perhaps resulting in a 

shorter assessment time [131]. In contrast to the RL-based technique, which has a higher rate 

of convergence and greater efficiency w. r. t. PSO algorithm. PSO has relied on a population-

centered optimization technique While the RL-based navigational methodology relies on 

previous experiences. Whereas the PSO algorithms perform better when handling jobs requiring 
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multi-objective optimization, the RL approach performs better when dealing with single-

objective problems. When PSO is compared with Q-learning, which operates with 

discontinuous actions and states and hence necessitates the separation of proximity sensor data 

and wheel velocity results, the PSO approach is used to distinguish the influence of 

differentiation from learning. Within the fields of optimization and ML, RL and PSO represent 

two different methodologies, which are compared based on their aspects in Table 6.1. 

TABLE 6.1: COMPARISON BETWEEN REINFORCEMENT LEARNING AND PSO 

Sr. No. Reinforcement Learning PSO 

01. 
Generally required huge data and 

careful tunning process for 

implementation. 

Easy to implement and does not require 

huge data. 

02. 
It can be slow in operations related to 

complex tasks. 

It is very fast for most of the 

optimization problems. 

03. 
Handeled by the exploration techniques 

such as epsilon-greedy and Q- learning 

algorithm. 

Generally handled by the parameters of 

particle dynamics. 

04. 
It solves sequential decision-making 

tasks. 

It solves generally fixed optimization 

tasks. 

05. Learning by feedback and interactions. Optimization by swarm intelligence. 

06. 
It is generally applied for tasks related 

to robotics, healthcare, autonomous 

systems, and gameplay. 

It is generally applied for tasks related 

to ANN training, function optimization, 

and engineering design. 

 

6.4.2. Reinforcement Learning Vs Thermal Navigation 

Thermal navigation is also a practical and simple way to utilize because of the 

advancements in infrared devices that have made it possible to use inexpensive infrared 

cameras. RL and Thermal Navigation represent two discrete ideas that are applied in various 

settings. The technique of employing infrared sensors to help robots travel through unfamiliar 
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environments by utilizing temperature gradients is known as thermal navigation [132]. On the 

other hand, RL is a kind of ML approach in which an agent gains decision-making skills by 

interacting with its surroundings with the objective of optimizing cumulative rewards [133]. 

Thermal navigation is dependent on physical and social responses to variations in temperature 

instead of a method of learning, whereas RL consists of trial and error methods, during which 

the agent evaluates alternative behaviors and learns via its results. For RL, when an agent acts 

in a situation, it obtains information in the way of rewards and modifies its strategy to enhance 

subsequent actions, while for thermal navigation, infrared sensors sense variations in 

temperature within their surroundings and navigate away from regions that have more 

temperatures. RL-based navigation and thermal navigation perform differently and have 

distinct goals, which are explained in Table 6.2: 

TABLE 6.2: COMPARISON BETWEEN RL-BASED NAVIGATION AND THERMAL NAVIGATION 

Sr. 

No. 
Reinforcement Learning Thermal Navigation 

01. 
The process of learning depends upon a 

trial-and-error technique with rewards 

feedback. 

Based on infrared sensors that have 

inherent sensitivity to heat-related 

inputs. 

02. 
This method follows the interactions with 

the environment to take optimal policy. 

This approach tracks movement by 

looking for temperature gradients. 

03. 
This method is flexible enough to work in 

dynamic, and complicated environments. 

This technique is constrained to 

navigation based on temperature. 

04. 
This approach requires a lot of processing 

and sophisticated algorithms. 

This approach is based on temperature 

change and is very easy to compute. 

06. 
This technique is in the nature of AI and 

ML. 

This technique is inspired by biological 

behavior. 
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Chapter 7 

Conclusion and Future Research Perspectives 

 

This chapter will serve as the dissertation conclusion, providing a summary of the most 

important findings and offering some suggestions for further study in the future to explore and 

enhance navigation strategy. 

7.1. Conclusion 

The need for mobile robots to navigate intelligently within dynamic environments is 

essential, as these machines are becoming more and more prevalent throughout the modern 

world. Robust and dependable controllers that can handle the unpredictability of the outside 

world have been established as a result of the necessity for the robot to possess the capacity to 

respond to variations in external circumstances. A pre-programmed MR is unable to meet 

potential demands, particularly where human collaboration is required because it is improbable 

that humans can accurately anticipate every possible real-world scenario. Sampling all potential 

solutions is not realistic for continuous-state issues, therefore RL algorithms become the 

recommended approach in supervised learning within the DL field when there is no instructor. 

In this method, the MR uses the RL to obtain prior information regarding the environment using 

the sensor data for the purpose of performing its collision-free movement. The suggested 

method uses a very basic but efficient simulation platform that shows fast and efficient training 

processes. 

This dissertation provides a better theoretical concept of MR, a historical background of 

MR, types of MR, and a robot learning process in the first chapter. Chapter 2 provides a broad 

range of information about AI, DL, ML, ANN, DNN, and RL. Chapter 3 gives a wide range of 
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surveys of related work. Chapter four describes MDP and POMDP broadly, and finally, this 

dissertation analyzes the role of RL in robot navigation within complex environments through 

simulation. Chapter six widely describes the concept of PSO and thermal navigation techniques. 

Also, the application of the thermal navigation approach by using infrared sensors for assistance 

to visually impaired people has been discussed in chapter six. Evaluating all potential solutions 

for continuous-state tasks is not realistic, therefore RL techniques serve as the recommended 

way to conduct supervised learning throughout the DL field when there is no trainer present. 

The results showed an apparent enhancement in reliability and safety when navigating in 

complex environments, but at an additional cost of enhanced energy requirements because of a 

longer exploration period. Simulations proved the efficacy of our whole learning strategy as 

there is a high probability that the robot will be allowed to travel autonomously in an unknown 

environment. 

This dissertation focuses on enabling MRs with the potential to acquire knowledge 

intelligently and adapt to dynamic environments. In this thesis, we presented a robot learning 

approach that uses neural network-based Q-learning models for self-learning during intelligent 

navigation in a variety of scenarios. It needs to be feasible for an intelligent robot to acquire 

knowledge to render decisions despite the absence of demonstrations. Interaction with the task 

environment makes it possible. We presented a Q-learning approach in this thesis using neural 

networks based on these presumptions. We enhanced the quality of the Q-learning method by 

adding this representation because we have demonstrated that an ANN might serve as a suitable 

policy formulation. 

The proposed robot learning technique uses model-free algorithms, which are better 

suited for practical use as it is hard to build a model of a new environment. The recommended 

approach in this dissertation uses a relatively simple but efficient simulation system that shows 

a fast and efficient learning rate in addition to the capability of sending the models to real robots. 
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The thermal navigation approach based on infrared cameras has been discussed broadly in this 

thesis. Thermal navigation techniques can provide assistance in the navigation of automobiles, 

mobile robots, and visually impaired movement. Thermal navigation technique is broadly 

described. Lastly, we have comparatively analyzed the relationship between RL and other 

navigation strategies including PSO and thermal navigation. 

7.2. Future Research Perspectives 

There are many future research possibilities still available for researchers to focus on RL 

technique regarding robotics application, which are described in detail as follows: 

Researchers can focus on facilitating the transmission of RL policy using methods such 

as field variation and adjustment from simulation to real-world circumstances. Firstly, this 

dissertation has established a conceptual framework for mobile robot learning and produced 

trustworthy simulation results. A step advance in robot learning technique might be achieved 

by conducting trials on actual vehicles within outside environments. In subsequent research, the 

reward function might be updated to improve the method of learning and optimize the accuracy 

rate of entirely autonomous navigation within an unknown environment. Secondly, a variety of 

sensors that record ambient data are essential to an intelligent robot control framework. 

Robotics having sensors of their own need to be enabled to acquire methods of control using a 

wide range of sensory data, particularly audio and visual ones. The suggested method has shown 

encouraging results, and it can potentially be enhanced to boost both learning and performance 

rates. The capacity to acquire knowledge from sophisticated sensor data might not simply 

confer intelligence into the robot, but it also improves its communication with people. 

Thirdly, for multi-robot frameworks, robot learning has allowed for further enhancement. 

As a result of a growing quantity of laborious tasks being performed by a team of robots, it will 

become vital to investigate robot learning approaches for the purpose of anticipating behavior 
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and improving interactions among other robots. Using machine vision and combination of 

sensors coupled with RL to enhance contextual awareness and decision-making. The sector is 

projected to experience notable progress in coming years with the incorporation of diverse AI 

technologies including DL and DRL, higher durability and security, and better communication 

between robotics and their surroundings. Finally, using a convolutional neural network (CNN), 

the deep reinforcement learning approach has been used recently for robotics navigation. In the 

near future research can be focused on using self-supervised methods to lessen dependency on 

data labeled by having robots develop independent data to train using explorations. DRL study 

is expected to provide significant advancements in robotics, since CNN, a member of the DL 

family, has demonstrated its efficacy in recognizing images and machine vision. 

Further developments in AI and sensor technologies have the potential to improve thermal 

navigation systems' reliability and effectiveness. More thorough environmental modeling and 

constraint recognition might be achieved by utilizing ML methods and combining extra sensors 

(such as LiDAR and ultrasonic ones). 
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