DZIEKAN i RADA WYDZIAŁU ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI i INŻYNIERII BIOMEDYCZNEJ AKADEMII GÓRNICZO-HUTNICZEJ im. ST. STASZICA W KRAKOWIE |
|
---|---|
zapraszają na publiczną dyskusję nad rozprawą doktorską mgra inż. Marcina Ochaba |
|
SYSTEM WSPOMAGANIA DECYZJI DLA WCZESNEGO WYKRYWANIA DYSPLAZJI OSKRZELOWO-PŁUCNEJ U WCZEŚNIAKÓW | |
Termin: | 8.06.2017, godz. 12:00 |
Miejsce: | pawilon B-1, sala 4 Al. Mickiewicza 30, 30-059 Kraków |
PROMOTOR: | prof. dr hab. inż. Wiesław Wajs, Akademia Górniczo-Hutnicza |
RECENZENCI: | dr hab. med. Przemko Kwinta, prof. Uniwersytetu Jagiellońskiego |
dr hab. inż. Adam G. Polak, prof. nadzw. Politechniki Wrocławskiej | |
prof. dr hab. inż. Leszek Trybus, Politechnika Rzeszowska | |
Z rozprawą doktorską i opiniami recenzentów można się zapoznać w Czytelni Biblioteki Głównej AGH, al. Mickiewicza 30 |
Praca przedstawia system wspomagania decyzji dla wczesnego wykrywania dysplazji oskrzelowo-płucnej (BPD) u wcześniaków. Standardowa diagnoza choroby dokonywana jest dopiero po czwartym tygodniu od urodzenia. Jak wynika z przeglądu literatury zamieszczonej we wstępie, pomimo wielu prowadzonych prac dotyczących predykcji BPD, aktualnie nie istnieje żaden ogólnie uznany model, możliwy do zastosowania w codziennej praktyce lekarskiej. Na podstawie wykonanych i zamieszczonych w pracy wstępnych badań zaproponowano więc stworzenie odpowiedniego systemu wspomagania decyzji. Opracowane oprogramowanie pozwala na znalezienie optymalnej metody predykcji przyszłej diagnozy już po pierwszym tygodniu życia dziecka, niezależnie od ilości dostępnych danych. Do konstrukcji bazy wiedzy wykorzystano dane historyczne 109 pacjentów, których masa urodzeniowa była równa lub mniejsza od 1500g. Wykorzystując wszystkie podzbiory czternastu dostępnych parametrów wykonano predykcję standardową metodą regresji logistycznej oraz nigdy wcześniej nie używanym do tego celu algorytmem SVM (ang. support vector machine). Ponad 33 tys. otrzymanych w ten sposób wyników zgromadzono w relacyjnej bazie danych. Na ich podstawie, mając na uwadze wymagania użytkownika oraz dostępne w konkretnym przypadku dane, system jest w stanie wyznaczyć najskuteczniejszą metodę predykcji oraz optymalny dla niej zestaw parametrów. Co ważne, szacowane są także przedziały, w jakich będą się zawierać wartości trafności, czułości i specyficzności proponowanych modeli (poprzez wyznaczenie ich odchyleń standardowych). Ponadto system potrafi zasugerować, jakie dodatkowe pomiary warto byłoby wykonać w celu maksymalizacji jakości predykcji oraz jak znacznej poprawy można się dzięki temu spodziewać. Stosując wskazania systemu, przy optymalnej dostępności danych, możliwe jest uzyskanie średniej trafności predykcji na poziomie 83,25%. Dzięki opisanym w pracy eksperymentom, możliwe było także dokonanie oceny istotności poszczególnych parametrów dla czułości i specyficzności przewidywania przyszłej diagnozy oraz porównanie własności wyników otrzymanych obiema metodami. W pracy zamieszczono ponadto przykłady ilustrujące problemy stojące na przeszkodzie stworzenia jednego możliwego do zastosowania w praktyce modelu. Tym samym udowodniono zasadność zastosowania tego nowego, oryginalnego podejścia do prognozowania badanego schorzenia. Praca zawiera ponadto opis użytych metod predykcji wraz z przykładami liczbowymi ich zastosowania zawartymi w załączniku.
Rozprawa udostępniona publicznie: m.ochab_praca_doktorska.pdf